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ABSTRACT

 This simulation study investigated the accuracy of the mean square and the 

standardized values of the item INFIT and OUTFIT statistics (i.e., based on total item fit) 

in Rasch dichotomous model under large-scale testing situations.  It also examined their 

associated Type I error rates to determine how the rule-of-thumb critical values perform 

in detecting item misfit.  Furthermore, simulated systematic measurement disturbances 

were used to test the power (i.e., the hit rates of true positive cases, true positive rates) 

and the false positive rates (i.e., Type I error rates) of the obtained values through 

between-item fit indices in identifying poor-fitting items.  A total of four sample sizes 

(i.e., 5,000, 10,000, 25,000, and 50,000 test-taking students) and three test length (i.e., 30, 

50, and 70 multiple-choice items) conditions were simulated to study how these statistics 

perform.  Additionally, different percentages of items (i.e., 4%, 10%, 20% and 40%) with 

moderate to large uniform DIF (i.e., 0.35, 0.45, 0.55, and 0.65 logit units) were designed 

to test the power as well as the Type I error rates.  The measurement disturbances were 

simulated between two balanced groups with “C” category DIF as defined by the ETS 

guidelines.  Results suggested that ±2.0 for standardized values may be recommended for 

large-scale testing situations.  Furthermore, it was found that the DIF item detection 

procedure currently used by Winsteps® is based on logistic regression, which, is 

sensitive to sample size and resulted in large numbers of items to be incorrectly identified 

with DIF.
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CHAPTER 1 

INTRODUCTION

Tests are an accepted part of our society.  For example, preschoolers demonstrate 

what they know about colors and shapes before admittance into a Montessori program.  

High school graduates show their knowledge on specific content areas before they are 

accepted to a college.  Doctors and nurses are required to showcase their medical 

knowledge and ability to work in the medical field prior to being granted a license to 

practice.  Novice drivers must pass a knowledge portion and a road test at their local 

Department of Motor Vehicles office to obtain the permission to drive independently, etc.  

These scenarios remind us that testing is prevalent and commonplace in our modern 

society, and probably all citizens have experienced numerous testing situations before 

they enter the workforce.  

Starting around the 1830s, formal assessments in the U.S. have gradually been 

standardized to reflect two fundamental beliefs about educational opportunities in the 

nation: fairness and efficiency (U.S. Congress Office of Technology Assessment, 1992).  

It is hoped that children are offered educational opportunities and services that are similar 

to those of other children, regardless of their background and previous experiences.  Fair 

testing brings forth the attempt to minimize subjectivity; thus, test developers stride to 

develop items and tests that measure students’ knowledge and performance as objectively 

as possible.  According to Renée Grinnell (2018), objective tests are psychological 

instruments that measure “a person’s characteristics independently of the taker’s bias or 
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personal beliefs”.  Furthermore, “the results of such tests are generally more reliable than 

subjective (self-report) or projective (expose unconscious perceptions) models” 

(“PsychCentral,” n.d.).  In assessment, an objective test consists of questions “that can be 

quickly and unambiguously scored by anyone with an answer key”, and this minimizes 

“subjective judgements by both the person taking the test and the person scoring it” 

(“Objective Test,” n.d.).  For instance, multiple-choice items are considered objective, as 

test takers typically receive the same raw score regardless of who scores the test.  Other 

advantages of objective tests include time efficiency and cost effectiveness, as rater 

training is minimal and the rating process is not as time-consuming.  All of these are 

attractive features, especially in large-scale testing situations in which the number of test 

takers can easily reach tens of thousands, and multiple testing sites are commonplace.   

Traditionally, test takers obtain a sum score for the number of correct responses 

they have provided.  This raw score indicates how well a test taker performs on a latent 

trait (i.e., an underlying construct, Bond & Fox, 2012; or a psychological attribute, 

Crocker & Algina, 2008) that the test intends to measure.  Typically, a higher score 

suggests better performance on the latent trait, such as math achievement, medical 

knowledge, language ability, etc.  For instance, in a Test of English as a Foreign 

Language (TOEFL; ETS, 1964), a score of 600 suggests that the English as a Second 

Language (ESL) learner has better mastery of the English language than another learner 

with a score of 380.  However, the conclusion is not as clear-cut between two examinees’ 

scoring, for example, 510 and 530 once measurement error is taken into consideration.  

Briefly, measurement error is considered as disturbances that are introduced by construct-

irrelevant variables that may be due to the test-taker themselves (e.g., dyslexia or anxiety) 
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or more random/systematic occurrences (e.g., differences in testing occasions, differences 

in question formats, differences in social-economic background).  In other words, the 

observed scores are not deemed to be a 1-to-1 representation of a latent variable when 

measurement error is considered (Bond & Fox, 2012).     

When scoring tests, the field of measurement has largely moved beyond reporting 

the number correct (i.e., a “total” score) to use more complex methods to reflect a test 

taker’s performance.  Modern test theory methods like the family of Rasch measurement 

models (Rasch, 1960) and Item Response Theory (IRT; Birnbaum, 1968) examine other 

major contributing factors like item characteristics and rater variability in addition to 

providing a summative score.  Thus, these methods improve precision in the testing 

situation, and ultimately, in score interpretation, which may lead to better decision 

making (i.e., validity associated with the scores).   

Rasch Models  

As a modern measurement framework to improve validity, Rasch measurement 

has been popular in state assessment programs.  Rasch models assert the position that an 

instrument needs to be invariant in order to measure a construct.  In other words, for 

items, one unit of the measurement scale (i.e., relative difficulties) should remain stable 

across substantially different subpopulations and regardless of what items are 

encountered (Bond & Fox, 2007).  Furthermore, this psychometric technique was 

developed to improve the precision when practitioners develop instruments, monitor 

quality, as well as compute responses (Boone, 2016).     

Rasch models belong to a family of psychometric models which share a common 

trait, with the existence of sufficient statistics (i.e., a statistic that summarizes all the 
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information in a sample about an unknown parameter without losing any information 

about this chosen parameter; Fisher, 1922) to estimate person and item parameters.  

Rasch models can utilize dichotomous and/or ordinal information as input for analyses.  

The underlying requirement is that data must fit the model, suggesting that data need to 

correspond with the underlying measurement paradigm.  Misfitting items (or people) are 

problematic, as data, which do not conform to the underlying model, jeopardize the 

validity associated with the obtained scores. 

To assess how well the data fit the model, Rasch methodology includes a variety 

of indices and tests for support.  While a variety of methods have been developed to 

assess aspects such as unidimensionality and reliability, the most commonly used 

methods, however, focus on assessment of item and person characteristics.  These 

methods use fit indices (called “fit statistics”) to evaluate the performance of responses, 

grouped by either persons or items.  The person fit statistics evaluate if responses from a 

person demonstrates the stochastic (i.e., probabilistic) structure of the Rasch model, in 

other words, if a person demonstrates an unexpected pattern in answers to the set of test 

items.  For instance, a high-ability person provided an incorrect answer to an easy item; 

or alternatively, a person with low ability correctly answered a difficult question.  The fit 

statistic would note this person as potentially misfitting as these occurrences occur more 

frequently in a response pattern.  The item fit statistics evaluate if the responses to the 

item function as intended and thus, can separate individuals based on their ability levels.  

For example, a very difficult item was correctly endorsed by many low-ability test-takers 

while an easy item was incorrectly answered by many individuals with high-ability 

levels.  The fit statistic would indicate these two items as potentially misfitting.  As both 
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person and item misfit can be assessed, the focus here is on item fit because researchers 

are generally more concerned with item fit for a variety of validation purposes like 

selecting well-performing items to create a fair test. 

Assessing item fit with the Rasch model.  The main item fit statistic used to 

identify items that do not fit the Rasch model (i.e., misfitting items), is a Pearsonian chi-

square initially proposed by Wright and Panchapakesan (1969).  The chi-square statistic 

was based on the differences between the observed and the expected score for a group of 

examinees that have obtained the same raw score (Smith, Schumacker, & Bush, 1998).  

Subsequently, fit statistics were developed on the basis of the item residuals, which are 

the difference between the observed and the expected responses (Smith et al., 1998). 

The fit statistic focuses on two versions: the information-weighted fit statistic 

(known as the “INFIT” statistic) and the unweighted fit statistic (known as the 

“OUTFIT” statistic).  The INFIT statistic is a weighted index that gives more “weight” to 

the person whose measures are closer to the item’s difficulty value.  The OUTFIT 

statistic is unweighted, meaning it gives equal weight to the person regardless of their 

ability level, and is thus, more sensitive to outlying person scores.  The OUTFIT statistic, 

being more sensitive to unexpected observations, is affected by random disturbances like 

guessing or carelessness (Smith, Schumacker, & Bush, 2000).  Therefore, in comparison 

to OUTFIT, INFIT problems are more difficult to detect and manage, and they pose more 

threat to measurement than OUTFIT problems (Linacre, 2002b). 

Problems with assessing model misfit.  Both the INFIT and OUTFIT indices 

can be expressed in mean square (MNSQ) values and the standardized (ZSTD) values.  

When researchers use the INFIT and OUTFIT item fit statistics to investigate responses 
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to items, both values present a dilemma.  Mean square values take into consideration the 

sample size.  These values will illustrate good model-data fit for an item simply by 

increasing the sample size.  Most (if not all) items will ‘appear to’ fit well in a situation 

when the sample size is large enough.  In this large sample situation, if ZSTD values may 

be used instead, however, with ZSTD, even the smallest amount of misfit becomes 

significant.  Therefore, most items will likely be rejected (Bond & Fox, 2012).   

The dilemma concerning what variant of the item fit statistic (MNSQ or ZSTD) to 

use may have important consequences in many situations that administer a longer (e.g., 

50 items) test to many examinees.  For example, in a typical state-wide testing situation 

when the number of examinees is large, using the MNSQ values to evaluate item fit may 

result in misfitting items not being identified as they will ‘appear’ to fit simply due to the 

large sample size.  By the same token, using the ZSTD values may over-identify items as 

majority of the items will have ‘significant’ amount of misfit due to the large sample size. 

Unless corrected for sample size (Smith, 1982), using MNSQ would lead to 

misidentification of items in testing when problematic items are deemed good, or good 

items are specified as misfitting compared to the use of ZSTD values.  Therefore, in 

large-scale testing situations, what fit index should be used to examine item fit?  What 

Type I error rate (i.e., type of errors researchers make when a false alternative hypothesis 

is concluded to be true, Sheskin, 2007; in this study, it is defined as the percentage of 

cases when well-performing items are incorrectly categorized using specific cut-off 

values, or false positive rates) should be used for the approximate critical values?  

Furthermore, what is the power (i.e., the percentage of cases when misfitting items are 
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correctly identified using specific cut-off values, true positive rates) of the approximate 

critical values in detecting measurement disturbances?   

Statement of the Problem  

Considering that many decisions made from state-wide assessments are high-

stakes and bring major consequences like retention, or graduation, it is important for 

assessments to use psychometrically sound (i.e., high quality) items.  Detecting 

malfunctioning items for future review or even exclusion is the initial step towards 

safeguarding fairness.  In the Rasch framework, various indices have been proposed and 

used to identify misfitting items; however, it remains controversial as to which index is 

more accurate under situations that involve different numbers of test takers and different 

lengths of tests.  Furthermore, it is questionable if the general guidelines to determine 

misfit of items function well in different testing situations.  In other words, how accurate 

are the suggested indices in identifying item misfit, especially in items that function 

substantially differently for different subgroups? 

This study specifically focuses on large-scale testing situations such as state-wide 

assessment programs in which sample size is very large and the length of the test is 

medium to long (e.g., 50 or more items).  Large sample sizes may result in under-

identifying problematic items if MNSQ values are used and in over-identifying misfitting 

items if ZSTD values are selected (Bond & Fox, 2012).  Therefore, it is necessary to 

investigate which Rasch-based fit indices provide more accurate information about 

individual items, how accurate the information is, and the ability (known statistically as 

the power) of these indices to detect measurement disturbances (i.e., interfering 
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conditions that affect the process of measurement of a latent trait; Schumacker, Mount, & 

Marcoulides, 2005).   

To investigate this issue, a simulation study was conducted.  The present study 

has attempted to provide some guidelines on item fit indices for large-scale testing 

situations, and it is hoped that the information can help psychometricians and test 

developers make better decisions about the item selection for future test administrations 

in order to provide fair testing opportunities.   

Research Questions  

As the Rasch methodology is widely used by state agencies to analyze 

standardized test results, it is imperative that information on the test items is accurate to 

inform stakeholders to make appropriate decisions.  Since typical state-wide assessment 

programs involve large-scale testing situations with long tests, the purpose of the study is 

to investigate the following research questions: 

1. Which value of the total item fit statistic is more sensitive to the large sample size 

(i.e., 5,000, 10,000, 25,000, 50,000) for an assessment of 30, 50, or 70 items, 

MNSQ or ZSTD values for INFIT and OUTFIT statistics?  

2. What Type I error rate should be used for the approximate critical values for each 

of the above conditions?   

3. What is the power of the obtained critical values to detect simulated measurement 

disturbances?  
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CHAPTER 2 

LITERATURE REVIEW 

 Assessment plays an important role in our modern daily life, and it is especially 

relevant in the field of education.  Assessment provides stakeholders with information on 

student achievement and growth, informs teachers about instructional decisions and 

focus, and guides politicians on the making of educational policies.  Assessment quality, 

and, particularly item quality, is essential to improve accuracy of the assessment results 

as well as validity of the conclusions drawn.  Information regarding item performance 

helps test developers identify items that may not function as intended on the instrument 

and need to be revised or even excluded from the assessment.   

 This chapter will briefly describe the history of large-scale assessment, its role in 

education as well as how information from large-scale tests has been used.  Then, after a 

short discussion on the traditional measurement approach Classical Test Theory (CTT; 

Spearman, 1907, 1913, also referred to as True Score Theory, TST; Lord, 1964) for 

computing test results, it will elaborate on commonly used modern measurement 

frameworks of Item Response Theory and Rasch measurement.  After a detailed 

description of Rasch measurement, the chapter will showcase how Rasch models 

contribute to large-scale assessment programs and how measurement findings obtained 

from Rasch models have been utilized to make educational decisions.  Next, the chapter 

will discuss selected Rasch-based fit indices and how these indices have been utilized for 
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measurement purposes.  The final section of this chapter will focus on item fit statistics, a 

widely used approach by practitioners to identify misfitting items.  After a brief 

explanation on how measurement disturbances may impact item performance, a detailed 

review of recent studies involving Rasch-based item fit statistic is discussed.        

Large-scale Testing 

Large-scale testing has become commonplace in our modern society, and almost 

all citizens have encountered such testing situations for important decisions, such as 

licensure, promotion, graduation, or certification.  The process has become standardized 

in an attempt to provide consistent and reliable performance information from the test 

results.    

Brief history of testing.  Systematic nation-wide standardized testing was first 

conducted in the Sui Dynasty (581-619) in ancient China, with the purpose to select 

candidates for government positions (“Imperial Examination in China”, n.d.).  

Formalized during the Tang Dynasty (618-907), annual tests were administered in 

content areas like literacy composition, arithmetic, and legislation to fill official and 

officer vacancies at various national and provincial levels (“Imperial Examination in 

China”, n.d.).   

In the early 19th century, the idea of standardized testing was advocated by 

Britain’s counsel in Guangzhou, China and introduced to Europe.  The British Empire 

first adopted testing practices for managers to make hiring and promotional decisions on 

company employees in order to prevent corruption and favoritism (“Imperial 

Examination”, n.d.).  Testing then spread throughout the British Commonwealth, Europe, 

and to America.   



www.manaraa.com

 

11 

Serving a different purpose in America, standardized aptitude quizzes named 

Army Mental Tests were administered during World War I to assign jobs to US service 

personnel (“History of Standardized Testing in the United States”, n.d.).  These tests 

systematically evaluated soldiers’ intellectual and emotional well-being.  Named the 

Army Alpha, the examination measured “verbal ability, numerical ability, ability to 

follow directions, and knowledge of information” and was administered to nearly two 

million servicemen (“History of Military Testing”, n.d.).  Its nonverbal equivalent, the 

Army Beta, was subsequently developed for illiterate and foreign soldiers (Pintner, 

1921).  

Testing in the school setting.  In the US, large-scale educational testing began 

state-wide in the 1970s and in the 1980s assessment became nation-wide in response to 

accountability demands in public schools which began gaining momentum in the 1960s 

(Stiggins, 2002).  While legislators attempt to use assessment outcomes to guide the 

decision-making process of education policies, educational laws exert substantial impact 

on the shape of K-12 public education in the United States.  Reauthorization of a major 

federal mandate, the Elementary and Secondary Education Act of 1965, known as the 

“No Child Left Behind” Act (NCLB, 2002), has driven education policy since its passage 

in 2002 (Dappen, Isernhagen, & Anderson, 2008) and brought assessment to the forefront 

in education.  NCLB requires states to administer annual assessments in reading, math, 

and science, and uses the student academic achievement information to provide evidence 

for school accountability.  Despite its problems and critics, the law has resulted in an 

increase in state-wide standardized testing, higher demand for performance standards, as 

well as more serious consequences for students, educators, and schools (DePascale, 
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2003).  In December 2015, the NCLB law was replaced by the “Every Student Succeeds” 

Act (ESSA, 2015), which modified the previous legislation but maintained provisions 

that were related to periodic standardized testing (“Every Student Succeeds Act”, n.d.).  

 Large-scale assessment is defined as tests that are “administered to large numbers 

of students, such as those in a district or state” (Montana Office of Public Instruction, as 

cited in DePascale, 2003, p. 3).  Generally, these assessment programs test students’ 

ability in content areas such as language arts, math, social studies, science, and history 

(DePascale, 2003).  They are usually administered to all students at various grade levels 

in elementary, middle, and high schools (DePascale, 2003).  The National Assessment of 

Educational Progress (NAEP; National Center for Education Statistics, 1969), American 

College Testing (ACT®; ACT Inc, 1959), Scholastic Assessment Test (SAT; College 

Board, 1993), and Measures of Academic Progress (MAP®; Northwest Evaluation 

Association, 2013) are some of the nation-wide tests students typically encounter in 

addition to state mandated testing.  Furthermore, these large-scale assessments have 

multiple objectives, including improving instruction (Landau, 1998; Popham, 2001), 

measuring students’ academic performance (“Measured Progress”, 2003, as cited in 

DePascale, 2003), determining education quality (Popham, 2001), and informing policy 

decisions (Wu, 2010).   

Test format.  As objectives of large-scale testing have changed over time, so 

have testing conditions and the test format.  Large-scale standardized testing has evolved 

from the paper-and-pencil format to the electronic computer-administered tests with fixed 

(i.e., an identical set of items to all examinees) or scrambled items (i.e., a set of items 

with different sequences or random ordering).  In addition, the computer-adaptive testing 
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(CAT) has gain popularity.  Initially developed by Reckase (1974), an interactive 

computer program was an early example of the CAT systems for tailored testing 

(Linacre, 2000).  As one of the most important developments of the 1990s, CAT systems 

adjust/adapt the test items that are administered on an assessment to an individual test 

taker’s ability level (Parhizgar, 2012).  For instance, if a test taker responds correctly to 

an item, the subsequent question will be slightly more difficult/challenging.  Vice versa, 

the next test item will be slightly easier/less challenging when a test taker fails a previous 

item.  In other words, items are selected based on the current test-taker’s estimated ability 

level (Linacre, 2000).  Targeting item difficulty on person ability increases the accuracy 

of the examinee’s ability by lowering the standard error of measurement.  When the 

required accuracy for computing an examinee’s ability is reached, the test concludes 

(Linacre, 2000).  Thus, different test takers will, most likely, not encounter identical sets 

of test items.  

Item format has also developed from the traditional multiple-choice, closed-

ended, to more task-based performance methods such as essay composition, reading 

report, oral presentation, drawing, etc.  The benefits for using performance as assessment 

format are abundant.  According to Johnson, Penny, and Gordon (2009), performance 

assessment is authentic and reflects real world situations in the field.  It also requires 

complex cognitive skills and strategies like analyzing and synthesizing to complete a 

task.  Furthermore, performance assessment demonstrates in-depth content knowledge 

and skills in the field (Messick, 1996).  Nevertheless, performance-based tasks require an 

extended period of time to develop, to complete, and to score.  They usually involve 
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substantial costs in test administration and scoring, and these tasks do not cover as much 

content in comparison to multiple-choice items (Johnson et al., 2009).   

Use of test information.  As large-scale assessment plays an increasingly 

significant role as an accountability tool, results of student academic performance have 

also been used for various educational purposes.  For instance, state agencies use test 

results to evaluate education quality and allocate funding accordingly; districts use 

information from tests to identify areas of strength or for improvement and provide 

targeted support to each school; school teachers use report card information to guide 

instruction and adjust teaching strategies; parents and students use this information to 

obtain a comprehensive view of the child’s academic performance.  Very often, the 

decisions are high-stakes and involve situations such as student retention, promotion, or 

graduation (Wyse, 2011; Yen & Henderson, 2002).  With time, the creation of technically 

sound assessments has gained great attention in order for stakeholders to face the intense 

professional and public scrutiny (Goodman & Hambleton, 2004).   

The Standards for Educational and Psychological Testing (American Educational 

Research Association [AERA], American Psychological Association [APA], & National 

Council on Measurement in Education [NCME], 1999) explicitly state that "the higher 

the stakes associated with a given test use, the more important it is that test-based 

inferences are supported with strong evidence of technical quality" (p. 139).  High-

quality assessments, particularly high-quality assessment items with solid psychometric 

properties, produce accurate and consistent results, which lead to conclusions that will 

guide crucial decision making at the national or state levels.  
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Traditional and Modern Measurement Models Used to Evaluate Test Quality 

As psychometrically solid tests are essential to providing reliable and valid 

information obtained from test results, researchers and test developers must focus on 

improving item quality.  Commonly used methods to examine item quality include 

traditional approaches such as CTT as well as modern measurement methods such as IRT 

and Rasch.     

Classical Test Theory (CTT) methods.  Traditionally, a test’s item-level 

information is obtained through the framework of CTT, which uses information from 

observed scores.  In identifying problematic items (e.g., items that are 

correctly/incorrectly answered by the majority/all test takers), CTT has the disadvantage 

of producing sample-specific item parameters and interpretations limited to the group 

being tested (Alasuutari, Bickman, & Brannen, 2009).  The dependencies of both person 

and item parameters on the test and examinee sample can limit the utility of these 

parameters in practical test development work (Hambleton & Jones, 1993).  

 Furthermore, under CTT, item calibration (i.e., creation of “a common scale on 

which all item parameter estimates can be expressed”; Crocker & Algina, 2008, p. 363) 

and person ability do not use a common scale (Perline, Wright, & Wainer, 1979; Rasch, 

1960; Smith, E., 2004).  Therefore, researchers cannot predict how an examinee would 

perform on an assessment, given his/her level of ability (Smith, E., 2004).  Another 

limitation of CTT is that score interpretation and reporting differ if a norm-referenced 

assessment or a criterion-referenced assessment is presented (Smith, E., 2004).  The 

former provides information on individual examinees’ relative position regarding other 

examinees in the norm group (e.g., different gender, ethnicity, age groups, etc.) but, 
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proficiency level remains unknown.  The latter illustrates examinees’ level of proficiency 

in a particular area yet, an examinee’s relative standing to the others is unclear.  In sum, 

the traditional CTT framework limits the usage and interpretation of scores.   

 Nevertheless, CTT information is still usually reported as this framework has 

several advantages (DeVellis, 2006).  One major advantage is that researchers and 

practitioners are typically familiar with its basic concepts because they serve as building 

blocks to modern measurement theories.  Another is that major statistical packages (e.g., 

R, SAS®, SPSS) include procedures to routinely perform basic analyses, such as 

reliability calculation using coefficient alpha (Cronbach, 1951).  These statistical 

packages are “widely available and relatively easy to use” (DeVellis, 2006, p. S57). 

As educational researchers and practitioners strive to improve assessment validity, 

methods to examine various aspects of test development have evolved from the 

traditional CTT to include modern frameworks of Item Response Theory (IRT) and 

Rasch measurement models. 

IRT models.  Popular IRT models include one-parameter 1PL, two-parameter 

2PL, and three-parameter 3PL models to estimate an examinee’s ability level on a latent 

trait from their response pattern to an item.  The three item parameters, denoted by a, b, 

and c, respectively represent the item discrimination, difficult, and (pseudo) guessing 

information.  Each model can be expressed through a mathematical formula and uses 

item information from one, two, or three of these parameters.  The 2PL and 3PL models 

are briefly explained first, followed by the Rasch model, which is mathematically 

equivalent to the 1PL model but philosophically distinct.  
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Focusing on the latent trait score instead, IRT models (e.g., two-parameter 2PL, 

three-parameter 3PL) assume that examinees’ responses to a test item can be accounted 

for by a latent trait, and these responses provide information on how test takers from 

various ability levels perform on a particular test item (Crocker & Algina, 2008).  

Mathematically, there exists an underlying (mathematical) model which is used to 

estimate how an examinee from a particular ability level of the latent trait would respond 

to a test item (Crocker & Algina, 2008).  This knowledge overcomes the limitation of the 

sample-specific information and allows comparison of examinee performance between 

different tests or items as well as comparison of item performance between different 

groups of test takers (Crocker & Algina, 2008).   

Two-parameter model.  Using logistic models, the 2PL model estimates two item 

parameters: discrimination (denoted by a-parameter, it is the slope of a logistic curve) 

and difficulty (denoted by b-parameter, it is the intercept of a logistic curve).  Following 

Crocker and Algina (2008), the mathematical formula for this model can be expressed as:  

𝑃𝑖 (θ)  =  
𝑒𝐷𝑎𝑖 (θ − 𝑏𝑖  )  

1+ 𝑒𝐷𝑎𝑖 (θ − 𝑏𝑖  )  
 ,              [1] 

where θ symbolizes the latent trait, e is the base of the natural logarithm, and D 

represents a constant.  Customarily, the constant D = 1.7 is used as a scale factor to 

convert the logistic distribution to a normal distribution (Wu, Tam, & Jen, 2016).  In the 

2PL model, the a- and b- parameters are specific to each item, and the probability of 

correctly responding to an item is estimated through these two parameters as well as an 

examinee’s ability level on the latent trait.     

In additional to the advantages of modern measurement methods over the 

traditional CTT approach, some of the 2PL model specific advantages include “providing 
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a closer statistical fit to the empirical data” and “more reliable ability estimates” (Baylor 

et al., 2011, p. 248).  However, this model lacks sufficient statistics to estimate the slope 

parameter, consequently, this model requires large sample sizes for item calibration since 

more parameters need to be estimated (in comparison to only estimating item difficulty 

parameter).  Furthermore, estimation of the discrimination parameter makes it more 

complicated to interpret and explain the item characteristic curves (ICC), which are 

curves that indicate the probability of correctly responding to an item given examinees’ 

ability levels on the latent trait to suggest underlying performance of an examinee 

(Crocker & Algina, 2008).  For instance, if Item 1 and Item 2 have different a-parameter 

values (i.e., item discrimination), they have different slopes.  Their ICCs would intersect 

at some point, and examinees at different ability levels would have different probabilities 

of correctly responding to Item 1 and Item 2.  This intersection of the ICCs violates the 

invariance property, a requirement for Rasch measurement models, that states an item 

needs to present the same probability of correctly responding regardless of an 

individual’s ability level.  In other words, the measurement unit needs to have the same 

distance for individuals at different ability levels.  

Three-parameter model.  In addition to the item discrimination and difficulty, the 

3PL model also estimates the (pseudo) guessing for an item (denoted by c-parameter, it is 

the lower asymptote of a logistic curve and is restricted to positive values).  

Mathematically, this model can be expressed as: 

𝑃𝑖 (θ)  =  𝑐𝑖  
( 1−  𝑐𝑖 ) 𝑒𝐷𝑎𝑖 (θ − 𝑏𝑖  )  

1+ 𝑒𝐷𝑎𝑖 (θ − 𝑏𝑖  )  
 ,             [2] 

where 𝑐𝑖 represents the additional (pseudo) guessing parameter for each item (Crocker & 

Algina, 2008).   
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 With the use of information from more item parameters, the model flexibility 

results in better model-data fit (CTB/McGraw Hill, 2008, as cited in LeBeau & McVay, 

2017).  Additionally, the 3PL model allows low ability test takers to obtain a greater than 

zero likelihood of correctly responding to an item through (pseudo) guessing (Crocker & 

Algina, 2008).  However, information from more item parameters (i.e., a, b, c) introduces 

many problems.  First, the 3PL score is not a sufficient statistic; meaning the total score 

does not contain all available information about the measurement of the latent trait.  

Furthermore, the score is no longer a logistic function; therefore, due to the addition of 

the estimation of the lower asymptote, it is problematic mathematically.   

The 3PL model still requires large sample sizes to estimate item parameters like 

the 2PL model.  Pelton (2002) pointed out that it is even more difficulty to accurately 

estimate the c-parameter than the a-parameter thus, increasing uncertainty in the obtained 

estimates.  Furthermore, as the (pseudo) guessing parameter is calibrated based on weak 

or capable samples of examinees, the item parameter sets that are produced may be 

substantially different (Pelton, 2002).  Therefore, researchers need to exercise care in 

interpreting perceived advantages in simulated 3PL studies on the accuracy of calibrated 

estimates (Pelton, 2002). 

Rasch methodology.  While the testing industry utilizes the two-parameter (i.e., 

2PL) and the three-parameter (i.e., 3PL) models under the IRT framework (e.g., major 

educational tests like the Scholastic Aptitude Test [SAT] and Graduate Record 

Examinations [GRE®], An & Yung, 2014; Birnbaum, 1968; LeBeau & McVay, 2017), 

most state-wide assessment programs use Rasch methodology to provide results.  The 

Rasch model is preferred by state-wide testing programs for many reasons.  The primary 
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reason, however, might be contributed to the differences in the theoretical frameworks, in 

which the IRT framework models are more “concerned with accurate test scoring and 

development of test items” (An & Yung, 2014, p. 1).  In contrast, the Rasch model is 

“developed to improve the precision” of item quality in order to “construct instruments, 

monitor instrument quality, and compute respondents’ performances” (Boone, 2016, p. 

1).   

Rasch model.  Named after the Danish mathematical statistician Georg Rasch, the 

Rasch model was developed during the late 1940s to the mid1950s from a probabilistic 

function that utilized the logistic distribution to model the probability of a correct 

response (Schumacker, 2004).  In contrast to IRT, Rasch (1960) noted and subsequently 

proved that “only the item difficulty parameter can be consistently and sufficiently 

estimated” (Schumacker, 2004, p. 227) from dichotomous response data.  Placing the 

item difficulty and the person ability on the same logit scale, the Rasch dichotomous 

model allows the item difficulty level to be independently calculated from the ability 

level of individual examinees.  The mathematical formula for the basic Rasch model is 

defined as: 

𝑃𝑛𝑖  =  
𝑒( 𝛽𝑛 − 𝛿𝑖 ) 

1+ 𝑒( 𝛽𝑛 − 𝛿𝑖 )  ,               [3] 

where 𝑃𝑛𝑖 is the probability of an examinee correctly answering an item, 𝛽𝑛 is the ability 

estimate of examinee n (where n = 1, …, N), and 𝛿𝑖 is the item difficulty estimate of item 

i (where i = 1, …, L) (Schumacker, 2004, p. 229).  Mathematically, this model is 

equivalent to the one-parameter (i.e., 1PL) IRT model with dichotomous data in which: 

𝑃𝑖 (θ)  =  
𝑒𝐷𝑎 (θ − 𝑏𝑖  )  

1+ 𝑒𝐷𝑎 (θ − 𝑏𝑖  )  
 ,              [4] 
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where 𝐷𝑎 equals to 1.7 multiples a constant 𝑎 instead of a variable 𝑎𝑖  as in the 2PL 

model (Crocker & Algina, 2008).   

Depending on the response type, the Rasch family consists of models that 

accommodate:  dichotomous responses (i.e., dichotomous Rasch model, Linacre & 

Wright, 1999; Rasch, 1960; Wright & Stone, 1979) and Likert rating scales (i.e., rating 

scale model, Andrich, 1978; Wright, Linacre, & Schultz, 1989; Wright & Masters, 1982; 

or the partial credit model, Linacre & Wright, 1999; Masters, 1982).  If raters are 

involved in providing responses with a rating, more complex models can be employed, 

such as many-facet Rasch measurement (Linacre, 1994; Schumacker, 1999), linear 

logistic test model ( Fischer, 1973), or paired-comparison model (Florin, 1999).  

Furthermore, more specialized Rasch models (i.e., multilevel measurement models, 

Adams & Wilson, 1996) have been developed to analyze data with more complex 

structures.  These Rasch models provide researchers and practitioners with ample 

measurement tools to meet different analysis needs in various situations they have 

encountered.  

Rasch model properties.  The family of Rasch models demonstrate attractive 

measurement properties that include: 1) a sufficient statistic for measuring the location of 

both persons and items on the latent trait; 2) specific objectivity; and 3) local 

independence for items.  The sufficient statistic is listed prior to the other two due to its 

primary importance.  Under the Rasch model, this is observed as a logistic function that 

uses the person/item counts (i.e., the total number of people who correctly select the 

response to an item, or the total number of items that an individual correctly answers; 

Wright, 1989), and a common unit of measure logit (or log odds, the logarithm of the 
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odds of success as p/(1− p) where p is the probability; Bond & Fox, 2012).  This function 

creates a common reference scale for both person ability and item difficulty 

(Schumacker, 2004), allowing both person ability and item measure share a common 

scale.  Statistically, this property allows person ability estimates to be freed from the 

distribution of the specific items encountered and also item difficulty estimates free from 

the specific people used for item calibration (Wright & Masters, 1982). 

 Specific objectivity suggests that the approach is independent of the sample of 

items or persons.  This means that examinees would maintain their relative ranking in the 

group regardless of which items are selected to use in the assessment.  For example, 

consider person A is more able in a certain latent trait than person B (i.e., higher level of 

the latent trait).  Even though both persons A and B took assessment Form 1 the first time 

and Form 2 the second time, their scores from both forms should reflect that person A got 

a higher score than person B.  When the analyses are sample-independent, it helps to 

build construct validity (i.e., inferences drawn from test scores to an intangible 

psychological trait that a single criterion cannot adequately represent or a universe of 

content cannot completely define; Crocker & Algina, 2008) evidence, as person and item 

measures are invariant.   

 Local independence is a requirement that suggests “the (conditional) distributions 

of the item scores are all independent of each other” (Lord & Novick, 1968, p.361).  In 

the Rasch and IRT models, items in a test are required not to be related to each other and 

that the construct is the driving force behind the item.  This suggests that a test taker’s 

reply to one item in a test should not affect his/her answer to another item.  In other 

words, the correlation of item residuals (i.e., differences between the observed and the 
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expected value for a respondent of a particular ability level on a test item; Linacre, 

2002a) between two items is zero if the items are not correlated after the effect of the 

latent trait is removed (Baghaei, 2008).   

 Rasch model assumptions.  As with other statistical methods, the family of 

Rasch models has assumptions that need to be met to ensure accuracy of estimation.  

There are three basic conditions (i.e., assumptions) that must be satisfied: 1) 

unidimensionality of the scale; 2) monotonicity of the scale; and 3) good model-data fit.  

These conditions suggest that the instrument should measure only one latent construct 

(i.e., unidimensionality), a higher latent score indicates a higher level of the latent trait 

(e.g., math ability), and the items fit the Rasch model (i.e., an item performs as intended, 

for instance, a difficult item being endorsed by examinees with high abilities instead of 

low abilities; Bond & Fox, 2012).  Unidimensionality under the Rasch model may be 

tested by examining model residuals resulting from applying a one-factor principle 

component analysis (PCA) to the data to indicate presence of multiple dimensions.  This 

analysis extracts data variance explained by the Rasch model/latent construct and 

determines if additional variance is present. 

 For the third model requirement, good model-data fit, global fit statistics such as 

Pearson chi-square, log-likelihood chi-square may be evaluated (“Global Rasch Fit 

Statistic”, 2007) to illustrate how well data fit the Rasch model.  Viewed as an ideal 

characteristic of measurement, invariance holds the key that provides evidence to 

construct validity, and it gives the Rasch models the advantage over traditional CTT 

methods and IRT models (Engelhard, 2013). 
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 Rasch model information.  The Rasch model provides information concerning 

how well the item/person (or both) responses conform to the proposed (underlying) 

model.  Those items/persons that do not fit the Rasch model are thought to compromise 

the construct validity associated with the attained scores.  Thus, misfitting items (or 

people) are problematic and need to be accurately identified as the Rasch model serves 

the purpose of constructing fundamental measures (Bond & Fox, 2012).  Therefore, it is 

crucial that methods be used and statistical information be provided to suggest if analysts 

can confidently establish the relationship between ordering of a dependent variable (e.g., 

math achievement) and the joint effect of two or more independent variables (e.g., items 

to measure math and individuals’ math ability).  This is essential to justify the claims we 

make about the results obtained from this measurement scale with interval measurement 

properties (Bond & Fox, 2012).  Information from the model provides evidence to 

researchers and practitioners the “extent to which the test may be said to measure a 

theoretical construct or trait” (Anastasi & Urbina, 1997, p. 126).    

Use of the Rasch Model with Educational Decision Making.  As a modern 

approach that evaluates an instrument at the individual item and/or examinee level, Rasch 

methodology has been widely employed in large-scale testing situations to examine 

psychometric properties of various educational measures.  Primary uses are defined and 

illustrated with examples that relate to large-scale testing situations. 

Scale development and validation.  A major use of the Rasch model is scale 

development and validation.  Moreover, it is a popular method to provide validity 

evidence to tests or scales.  For instance, researchers have utilized Rasch model to scale 

latent scores in an international achievement program (Monseur & Adams, 2009), or to 
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obtain scaled scores on constructed-response items (Sykes, Yen, & Ito, 1996).  Also, 

researchers have used Rasch-scaled scores to select benchmark writing samples (Popp, 

Ryan, Thompson, & Behrens, 2003) and to set standards for writing tasks in alignment 

with the European framework (Harsch & Rupp, 2011).  Additionally, the Rasch partial 

credit model was employed to examine the effects of local item dependence on testlet 

calibration (Yan, 1997).  In measuring elementary or middle level students, Rasch 

method was used to provide content, substantive, and generalizability evidence to 

develop the NOSI-E scale (Nature of Science Instrument-Elementary; Peoples, 2012; 

Peoples, O’Dwyer, Shields, & Wang, 2013), or to examine the predicative validity of 

math achievement (Vista, 2016).   

DIF analysis.  Another extensive usage of the Rasch family model is to detect 

differential item functioning (DIF).  This involves investigation of the invariance 

property of the instrument.  If an item or the test provides advantage to a particular 

subgroup of the examinees over another subgroup, it may introduce bias and impact 

fairness of the measure.  For instance, gender difference on math ability was inspected 

through the Rasch lens (Liu & Wilson, 2009).  Gender differences in favor of males were 

found on complex multiple-choice items as well as Space and Shape items in the U.S. 

portion of the Programme for International Student Assessment (PISA; OECD, 2000).   

Other uses of the Rasch model are varied.  These include investigations of math 

test scores across 21 nations (Yildirim, Yildirim, & Verhelst, 2014) and how explanatory 

models based on Rasch theory may be used to detect systematic differences between 

subgroups of test takers as well as subsets of items (Engelhard, Wind, Kobrin, & 

Chajewski, 2013).  Rasch may be used to search for patterns in model-data fit for 
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differences in subgroups of test takers and items (Engelhard, Kobrin, & Wind, 2014), 

possible effects of booklet design (Harsch & Rupp, 2011; Hecht, Weirich, Siegle, & Frey, 

2015), and effects of item position on student performance (Hohensinn, Kubinger, Reif, 

Schleicher, & Khorramdel, 2011).  The use of Rasch model was also extended to the 

longitudinal investigation of educational outcomes for difference in group-specific 

growth (von Davier & Xu, 2011). 

Reliability improvement and bias review.  The Rasch model has been used in 

large-scale assessments to improve reliability of test scores and reduce bias for test 

takers.  For example, the Rasch many-faceted model was employed to calibrate raters and 

tasks (Engelhard, 1992), to validate two consecutive administrations of an assessment 

(Bonk & Ockey, 2003), to cross-validate and calibrate an instrument with numerous 

moderator variables and ability dimensions (Kubinger et al., 2011), to calibrate scores 

from different raters in order to improve rater reliability (Congdon & McQueen, 2000; 

McQueen & Congdon, 1997), and to detect common patterns of rater errors (Wolfe & 

Chiu, 1997).  Furthermore, researchers have used the Rasch model to examine guessing 

bias (Andrich, Marais, & Humphry, 2016) and to examine how eliminating guessing bias 

affects difficulty parameters (Andrich & Marais, 2018) 

Miscellaneous usage.  Studies have employed the Rasch family models for 

various other purposes such as to equate scores (Bowe & Cronin, 2005), to obtain 

examinee ability and test item estimates (Fleckenstein, Leucht, Pant, & Köller, 2016), to 

differential students on their attained level of competences (Mesic & Muratovic, 2011), 

or to analyze test results (Wolfe & Miller, 1997).  Rasch models have also been used to 

analyze psychometric properties of instruments in pilot studies before the instrument is 
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fully implemented (Hagquist & Hellström, 2014), and to analyze factors in order to 

discover dimensionality of a latent construct (Sälzer & Heine, 2016).   

 Educational decision making.  With the wide application of Rasch measurement 

models in various disciplines, Rasch analysis results have been used to improve 

assessment practice (Bonk & Ockey, 2003; Hecht et al., 2015; Kubinger et al., 2011; Liu 

& Wilson, 2009; Wolfe & Miller, 1997), to predict examinees’ future performance 

(Bowe & Cronin, 2005; Fleckenstein et al., 2016), and to guide future instruction (Vista, 

2016).  Furthermore, educators have utilized Rasch study results to improve rater 

reliability through monitoring or training (Congdon & McQueen, 2000; Eckes, 2008; 

McQueen & Congdon, 1997; Wind & Engelhard, 2012), to improve result reporting 

(Engelhard et al., 2014), even to set cut score or benchmarking standards (Harsch & 

Rupp, 2011; Popp & Ryan, 2002; Wyse, 2011).   

Rasch-based Fit Indices 

As a popular tool that serves multiple measurement purposes, Rasch measurement 

models hold an important seat in large-scale assessments.  As this method is commonly 

used in state-wide assessment, it is imperative to evaluate how this tool functions under 

different situations.   

Use of fit indices.  As a measurement model that is dedicated to the construction 

of fundamental measures (Bond & Fox, 2012), the Rasch model provides information on 

the performance of various model components to safeguard validity associated with the 

test scores.  Fit indices (e.g., overall model fit, item fit, person fit) are used to evaluate 

these components, and these indices have been utilized for various purposes during the 
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test development process in different disciplines such as education, public health, 

psychology, and language arts.   

Beginning in the 1970s and the early 80s, the work of Rasch-based fit index 

investigation was undertaken in the University of Chicago with researchers like Mead 

(1976) and R. Smith (1982).  It was concluded that fit indices can be used for detecting 

measurement disturbances.  For instance, the R. Smith simulation study (1982) compared 

the likelihood ratio fit statistic and the INFIT and OUTFIT between-fit statistic.  Results 

indicated that the two Rasch-based fit statistic highly correlated with the likelihood ratio 

statistic (i.e., r = 0.99).    

Using item fit statistics, researchers have identified items that did not appear to 

function satisfactorily to either improve the assessment (Baghi, 1990; Klassen et al., 

2014; Papadopoulos, Spanoudis & Kendeou, 2009) or to reduce the number of items 

(Erhart et al., 2009; Kang et al., 2018).  Pilatti and her colleagues used person and/or item 

fit information to examine the psychometric properties of the Spanish version of an 

alcohol consequences questionnaire (Pilatti et al., 2014; Pilatti, Read, & Caneto, 2016), 

an alcohol expectancies questionnaire (Pilatti, Godoy, Lozano, & Brussino, 2015), as 

well as an impulsive behavior scale (Pilatti, Lozano, & Cyders, 2015) during the scale 

development process.   

Another major purpose of using Rasch-based fit indices is to provide validity 

support.  Researchers and other stakeholders have used global fit indices (e.g., overall fit 

statistic) as well as other statistics (e.g., reliability) to validate a scale under investigation.  

For instance, overall fit, averaged person fit and item fit were analyzed to examine 

dimensionality and validate the construct of phonological abilities in Greek 
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(Papadopoulos et al., 2009).  With an undergraduate admission test, the person fit statistic 

was examined to detect how individuals’ profile conformed to the model to validate the 

assessment under repeated test administrations (Andrich, Styles, Mercer, & Puddey, 

2017).  In another study, item fit information was provided as validity evidence for a 

morale scale in a Hong Kong Chinese elderly population (Wong, Woo, Hui, & Ho, 

2004).  Additionally, global and item fit, along with age or gender DIF information, were 

studied to identify best items and validate a generic scale that measures self-management 

skills (Klassen et al., 2014). 

 As test/scale developers and Rasch researchers strive to create better measures 

with solid psychometric properties, fit indices aid them in achieving this goal.  For better 

practice, educational researchers Walker, Jennings, and Engelhard (2018) investigated 

person misfit to improve score interpretation as well as detect potential threats to validity.  

All the above-mentioned studies have only reported a portion of how Rasch fit indices 

were utilized, but the research has provided ample examples on how these indices can be 

applied.        

Specifically, each item fit statistic consists of three types: total item fit, between-

item fit, and within-item fit, depending on how the squared standardized residuals are 

summarized (Smith, 2000).1  Each type of item fit also has two versions, related to the 

use of weighting : weighted item fit and unweighted item fit.  Furthermore, both the 

weighted and the unweighted versions of item fit can be calculated through mean square 

(MNSQ) values, or t-transformation standardized (ZSTD) values.  Therefore, there are 12 

variations of item fit statistics (e.g., weighted total item fit mean square value, weighted 

 
1 For detailed explanations and calculation methods, please consult Smith (2000). 
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total item fit standardized value, unweighted total item fit mean square value, unweighted 

total item fit standardized value, etc.).  For this particular study, only the weighted and 

unweighted total item fit (MNSQ and ZSTD) as well as the unweighted between-item fit 

statistics (MNSQ and ZSTD) were used.                   

Item fit statistic.  Within the Rasch framework, a fit statistic undertakes two 

primary branches of development: the Pearsonian chi-square approach (Wright & 

Panchapakesan, 1969) and the likelihood ratio chi-square approach (Andersen, 1973; 

Gustafsson, 1980; van den Wollenberg, 1982).   The Pearsonian chi-square test evaluates 

the likelihood of obtaining the observed difference by chance; while the likelihood ratio 

chi-square test compares the goodness of fit of the null hypothesis model and an 

alternative hypothesis model.  In Rasch measurement, the former is prevalent within the 

United States and Australia (Smith, R., 2004a). 

The main item fit statistic, a Pearsonian chi-square value initially proposed by 

Wright and Panchapakesan (1969), has been used to identify items that do not fit the 

Rasch model (i.e., misfitting items).  The chi-square statistic was based on the differences 

between the observed and the expected score for a group of test takers that have obtained 

the same raw test score (Smith et al., 1998).  Following this concept, fit statistic was 

subsequently developed on the basis of the item/person residual, defined as the 

differences between the observed and the expected responses (Smith et al., 1998). 

The fit statistic focuses on two versions: the information-weighted fit (INFIT) 

statistic and the unweighted fit (OUTFIT) statistic.  The INFIT statistic is a weighted 

(WT) fit statistic, meaning that it gives more weight to the person with measures that are 

closer to the item difficulty value.  Its mathematical formula is:  
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𝑥2 (𝑊𝑇)𝑖  =  
∑ (𝑥𝑛𝑖 − 𝑝𝑛𝑖  )2𝑁

𝑛=1

∑ (𝑝𝑛𝑖 (1 − 𝑝𝑛𝑖  ))𝑁
𝑛=1

 ,                        [5] 

where 𝑥𝑛𝑖 is the observed response of item i from examinee n and  𝑝𝑛𝑖 is the probability 

of examinee n correctly answering item i (Smith, R., 2004a, p. 83).  

For the INFIT statistic, the weights (WT) are used to reduce the influence of 

responses that are less informative (i.e., low variance), or off-target (Wright & Masters, 

1990).  In the weighted formula above [5], information function (𝑝𝑛𝑖 (1 −  𝑝𝑛𝑖)) is used 

to weigh each squared standardized residual value before summation.  The paradox for 

the INFIT statistic is that regardless of the person and the item locations on the variable, 

any response is equally likely; this diminishes the power of the INFIT statistic to detect 

anomalous responses.   

The OUTFIT statistic is unweighted (UT).  Here, the formula simply sums all the 

chi-square values for any identified person-item interactions.  As a result, the OUTFIT 

value is more sensitive to outlying person scores or unexpected observations (i.e., random 

disturbances) like guessing or carelessness (Smith et al., 2000).  Therefore, OUTFIT 

problems are easier to detect and manage, and they create a lesser threat to measurement 

than the INFIT statistic (Linacre, 2002b).  Following the mathematical formula by Smith 

et al. (1998), it can also be expressed as: 

𝑥2 (𝑈𝑇)𝑖  =  ( 
1

𝑁
  ) ∑

(𝑥𝑛𝑖 − 𝑝𝑛𝑖  )2

𝑝𝑛𝑖 (1 − 𝑝𝑛𝑖 )
𝑁
𝑛=1  .             [6] 

Both INFIT and OUTFIT statistics can be expressed either in mean square 

(MNSQ) values or standardized values (ZSTD).  Mean square values are calculated by 

taking the average value of the squared residuals for a particular item because the mere 

sum of all the residuals results in zero.  The ZSTD values are calculated by dividing each 
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score residual by its standard deviation (SD) (𝑝𝑛𝑖 (1 −  𝑝𝑛𝑖))1/2 (Smith, R., 2004a).  

Mathematically, the formula for a standardized residual is: 

𝑦𝑛𝑖  =  
(𝑥𝑛𝑖 − 𝑝𝑛𝑖  )

( 𝑝𝑛𝑖 (1 − 𝑝𝑛𝑖  ))1/2
 ,              [7] 

where 𝑥𝑛𝑖 is the observed response of item i from examinee n and  𝑝𝑛𝑖 is the probability 

of examinee n correctly answering item i (Smith, R., 2004a).  

Symmetrical threshold values ignore the distributional properties of the MNSQ 

statistic, suggesting the MNSQ statistic is not symmetrical.  The expected value of this 

statistic is 1.0, with a minimum value of 0.0 and a maximum value of + ∞.  The shape of 

the distribution precludes the use of symmetrical critical values for their upper and lower 

tails of the distribution as demonstrated by the Smith et al. study (1998).  Linacre (2019a) 

explicitly explained how to use these statistics to diagnose item fit.  Larger MNSQ values 

indicate a larger difference between the expected responses to the item and actual 

responses.  Values that are larger than 1.0 suggest underfit to the model meaning that 

there is unmodeled noise or other sources of variance and the data are less predictable 

than expected.  Values less than 1.0 indicate overfitting and data are more predictable 

than expected.  A mean square of 0.6 indicates the data are too “Guttman-like” 

(suggesting a predictable hierarchical order) and there is a 40% deficiency in the 

predicted randomness.  This implies that there is 100 x (1 − 0.6) / 0.6 = 67% more 

ambiguity in the inferred measure (e.g., a scale or instrument to measure a latent 

construct) index than is modeled, suggesting “a few random responses from low 

performers”, or mis-performing items by respondents who the items are aimed for 

(Linacre, 2019a).  Standardized values are converted through the cube-root 
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transformation to approximate a normal distribution and are reported as a t-statistic with 

infinite degrees of freedom.   

In general, MNSQ values between 0.7 and 1.3, as well as ZSTD values of −2.0 to 

+2.0 are considered acceptable for both indices (Wright & Linacre, 1994).  Mean square 

values below 0.7 may produce excessively high reliability and separation coefficient (i.e., 

a correlation coefficient that classifies a group of examinees or verifies the hierarchy of 

test items; Linacre, 2019b) values that are misleading; whereas values larger than 1.3 

may distort or degrade the measurement system, compromising unidimensionality of the 

instrument (Linacre, 2002b; Smith, Rush, Fallowfield, Velikova, & Sharpe, 2008).  

Instead, more conservative MNSQ values of 0.8 and 1.2 are suggested under high-stakes 

situations (Wright & Linacre, 1994).   

For ZSTD, standardized values of −3.0 to +3.0 have been recommended as cut-

off values for large samples (Iramaneerat, Smith, E., & Smith, R., 2007).  Standardized 

values below −2.0 suggest that data are too predictable and that other “dimensions” may 

be present to constrain the responses (to make the response patterns predictable).  Values 

that are larger than +2.0 suggest that the data are noticeably unpredictable and, thus, do 

not provide much useful information.  According to R. Smith (2004a), ZSTD values 

larger than ±2.0 will occur only when the probability of a correct response is less than 0.2 

or greater than 0.8 and when the response is in the unexpected direction.  For values 

greater than ±3.0 to occur, the probability of a correct response is less than 0.1 or larger 

than 0.9 and the response is in the unexpected direction.   

While INFIT and OUTFIT can be computed for both persons and items, here, the 

focus is on item fit because in general researchers are more concerned with item fit for 
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large-scale testing (and subsequent validation) purposes.  As there are 12 different fit 

indices, the indices to be used in this study are defined.  The focus of Research Questions 

1 and 2 are to investigate the total item weighted (INFIT) and total item unweighted 

(OUTFIT) fit statistics, both MNSQ and ZSTD values.  For Research Question 3, the 

unweighted (OUTFIT) between-item fit MNSQ and ZSTD values were used for the 

power analysis due to their sensitivity to systematic measurement disturbances and 

availability in Winsteps® procedures.    

As noted earlier, when researchers use total item fit statistics to detect problematic 

responses to items, both the MNSQ values and the ZSTD values present a dilemma.  

Mean square values take into account the sample size and these values will approach 1.0 

(illustrating good model-data fit) simply by increasing the sample size.  When the sample 

size is large enough, most (if not all) items would ‘appear to’ fit well.  If ZSTD values are 

used instead, even the smallest amount of misfit becomes significant (i.e., > 2.0) when 

the sample size is large enough.  Therefore, most items will likely be rejected based 

solely on the values of fit indices (Bond & Fox, 2012).   

Based on this conclusion, in large-scale testing situations whereas the number of 

examinees easily exceeds a few thousand, it is very likely that most items would appear 

to fit well if MNSQ values are used, or most items would likely be rejected if guidelines 

of ZSTD values are followed.  Although ZSTD may perform better than the MNSQ when 

large samples (i.e., approximating empirical testing situations) are used, there has been 

limited research involving both under such situations.  Due to the relative lack of 

computation ability of computers and calibration programs to deal with large sample 

sizes with much of the Rasch fit investigations conducted in the 1980s, so far, only one 
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study on total item fit indices (DeMars, 2017) was conducted with a sample size of 5,000.  

All the other related research has investigated sample sizes no larger than 2,000 test 

takers; however, large-scale testing programs typically include tens of thousands of test-

takers.  

Impact of measurement disturbances.  Fit statistics are used to detect high-

quality measurement items that provide accurate information on student performance.  

Measurement disturbances introduce construct-irrelevant variance in student performance 

and may distort inferences drawn from assessment results.  A frequently occurring type 

of measurement disturbance creates systematic errors and favors a particular subgroup of 

examinees after their ability levels are matched.  Items that provide advantage to certain 

examinees due to their group membership are deemed biased, thus it is imperative that 

the fit statistics function well in such situations to detect the items that function 

differentially, in other words, Differential Item Functioning (DIF).  DIF analysis is 

usually conducted to evaluate the invariance property of a measure across subgroups of 

test takers (e.g., racial/ethnic or gender subgroups).  Various methods (e.g., Mantel-

Haenszel [MH] statistic, Mantel & Haenszel, 1959; SIBTEST, Shealy & Stout, 1993; 

item-focused tree permutation test, Tutz & Berger, 2016) have been developed to detect 

DIF.  Under the Rasch model, the between-fit statistic is generally recommended to 

evaluate if an item functions differently between subgroups of examinees (Smith, R., 

2004a), and the rule-of-thumb guidelines (i.e., 0.7 and 1.3 for MNSQ and ±2.0 for ZSTD 

in non-high-stakes situations as suggested by Wright & Linacre, 1994) are usually 

followed for item evaluation.   



www.manaraa.com

 

36 

Differential Item Functioning has been well studied, especially in large-scale 

testing programs.  A meta-analysis study on reading assessment (Koo, Becker, & Kim, 

2014) concluded that English Language Learning (ELL) students and non-ELL students 

performed differently on different types of reading comprehension questions in third and 

tenth graders when their gender and ethnic backgrounds were taken into consideration.  

Further, using test results from a state-wide mathematics assessment, researchers 

(Scarpati, Wells, Lewis, & Jirka, 2011) noted that performance differences were 

associated with item difficulty, student ability, as well as accommodation provided to 

students with disabilities.  A study on the minority and majority of Francophone students 

in Canada suggested the existence of heterogeneity of DIF within each linguistic group; 

and researchers proposed developing “tests that are fair for a subset of examinees” 

instead of all subgroups due to the detected within-group heterogeneity (Oliveri, Ercikan, 

Lyons-Thomas, & Holtzman, 2016).  Cross-nationally, German researchers (Sachse, 

Roppelt, & Haag, 2016) identified the presence of DIF (e.g., item translation, cultural 

specificities, curriculum coverage) in the Programme for International Student 

Assessment (PISA; OECD, 2000).   

Given the importance of item quality to test validity, it is important to understand 

how the item fit statistics function in detecting misfitting items.  In other words, it is also 

imperative to test the ability (or the power) of the suggested fit statistic used to identify 

measurement disturbances.  It is hoped that the fit statistic obtained from the proposed 

study would perform well in identifying the items that present DIF, which may be 

introduced by gender, ethnicity, social economic background, etc.  Ideally, the results 
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would reach a satisfactory accuracy rate indicated by the percentage of true positive 

cases. 

Research on Item Fit Indices  

The general guidelines on fit statistics proposed by Wright and Linacre (1994) 

have been popular among psychometricians and researchers.  However, in the field of 

education, only a handful of studies have been conducted to validate the suggested 

values.  A simulation study by Smith and colleagues was conducted in the late 1990s and 

only a couple of studies focused on this topic in the 2000s (Wang & Chen, 2005; Su, 

Sheu, & Wang, 2007).  This topic has recently gained attention, and resulted in several 

additional studies (DeMars, 2017; Hodge & Morgan, 2017; Seol, 2016; Wolfe, 2013).          

Using BICAL and BIGSTEPS, early Rasch researchers Smith and colleagues 

(1998) studied the MNSQ values as well as the ZSTD values.  They concluded that the 

former appeared to be more sensitive to factors such as sample size than the latter; 

therefore, suggested ZSTD values be considered to identify item misfit.  Furthermore, 

different critical values for total fit indices may need to be considered as a function of 

sample size.  For instance, to have a consistent Type I error rate of approximately .05, 

unweighted mean square critical values of 1.3, 1.2, and 1.1 would be needed to identify 

misfit for sample sizes of 150, 500, and 1,000, respectively (Smith et al., 1998).  This 

study suggested that using a single critical value for the mean square to identify item 

misfit can lead to under- or over- detection (Smith et al., 1998).  Also, results from this 

study showed that the MNSQ values obtained by the study are not symmetrically 

distributed, and researchers suggested that symmetrical critical values for detecting item 
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misfit would have different Type I error rates for the upper and lower tails of the 

distribution.  

In 2005, Taiwanese researchers Wang and Chen conducted a study using Monte 

Carlo simulations.  In the Rasch dichotomous model, they manipulated eight levels of 

sample sizes (100, 200, 400, 600, 800, 1000, 1,500, and 2,000 examinees) and four levels 

of test lengths (10, 20, 40, and 60 items) to investigate how item parameter recovered, as 

well as the performance of standard error estimates and total fit statistics.  Results 

showed that for the item parameters, Winsteps® yielded biased estimates.  In short tests 

(20 items and fewer), Winsteps® overspread the difficulty estimates: it underestimated 

easy items yet overestimated difficult items.  However, the parameter estimates tended to 

be non-substantial in longer tests.  After the researchers implemented a correction 

procedure introduced by Wright and Douglas (1977) through multiplying the correction 

factor of (L – 1) / L, whereas L being the test length, the magnitudes of the estimation 

bias were considerably reduced to close to zero2 (Linacre, n.d.).    

Although Winsteps® did not yield biased standard error estimates, it yielded 

INFIT and OUTFIT mean square values that were approximately equal to 1.0 on average.  

Even though the standard deviations of these values failed to converge to a constant, they 

tended to decrease as the sample size increased.  Furthermore, the standard deviations of 

the OUTFIT mean square values were larger compared to those of the INFIT values.  

While the sample size appeared to impact the estimates, the test length did not seem to 

affect both the item INFIT and the item OUTFIT mean square values.  This study also 

suggested that both the INFIT and OUTFIT mean square values showed different 

 
2 Winsteps® corrects this bias with the normal statistical correction to include estimates 

of the item difficulty.   
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magnitudes of variability as sample sizes changed, and they needed different critical 

ranges to screen misfitting items.   

This simulation study also showed that the means of the INFIT and OUTFIT 

standardized values were very close to the theoretical value of zero, yet their standard 

deviations were smaller than their theoretical values of 1.0 (Wang & Chen, 2005).  

Again, the standard deviations of the OUTFIT standardized values were larger than their 

counterparts of the INFIT values.  The researchers suggested that in general, the 

commonly used critical ranges of ±2.0 at the .05 level were safe to use to screen items 

with moderate difficulties and smaller sample sizes (n < 2000).   However, this range 

would be too conservative when items were extremely easy/difficult.  Using this range 

might result in incorrectly identify poor-fitting items.  Therefore, the researchers 

proposed the use of a correction so that the INFIT and OUTFIT standardized values 

would more closely follow the standard normal distribution.  Results from Wang and 

Chen (2005) indicated that the standardized values should be considered to detect item 

misfit, as suggested by Smith (1982). 

 Another study conducted by Su et al. (2007) used the parametric bootstrapping 

method to examine a set of 15 items with two levels of sample sizes of 200 and 2,000.  

Their results suggested that point estimates of the MNSQ values alone were not 

appropriate for use to identify misfitting items.  Furthermore, researchers concluded that 

it was inappropriate to use the rule-of-thumb cut-off values of the standard normal 

distribution to screen items because the INFIT and OUTFIT standardized values do not 

exactly follow the standard normal distribution.  Similarly, researchers reiterated that 

sample size influences the use of INFIT and OUTFIT MNSQ values.  When a sample 



www.manaraa.com

 

40 

size became sufficiently large, all items in a real test would be eventually identified as 

poorly fitting.  Therefore, they suggested, we needed to use effect-size measures to assess 

the magnitude of the misfit. 

 Fast forwarding to the 2010s, Wolfe (2013) also employed the bootstrap 

procedure to evaluate the total fit statistics to the family of Rasch models.  For the 

simulated dichotomous model, he generated data from a standard normal distribution 

[i.e., N (0, 1)] for the 1,000 trait scores within the < 2,000 range for ±2.0 critical values 

and from a uniform distribution [i.e., U (−2, +2 logits)] for the 100 different values of 

item difficulty.  All data were randomly sampled from the associated distributions. 

Item fit results showed that the bootstrap critical values performed quite well with 

respect to Type I error rates for the INFIT mean square and standardized values.  Values 

were slightly lower for the two versions of the OUTFIT index, but were still fairly close 

to expected values. 

Using empirical data and a dichotomous model, researchers resampled from 385 

respondents answering a 58-item self-reported questionnaire (Viger, Wolfe, Dozier, & 

Machtmes, 2006).  Results suggested that the bootstrap critical values for the INFIT 

mean square and standardized values flagged more items than the widely used values; 

whereas the OUTFIT mean square and standardized values identified fewer items than 

the often-used values.  This study reiterated that the ZSTD values of both the INFIT and 

the OUFTIF total item fit statistics tended to perform better than their MNSQ 

counterparts. 

 As researchers asserted that point estimates may not be appropriate to detect ill-

fitting items, some studies (Su et al., 2007; Wolfe, 2013) proposed expanding the 
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estimates to a range of values, i.e., using confidence intervals (CIs), an interval or the 

boundary of numbers the possible values of this statistic are believed to fall within 

(Agresti & Finlay, 2009).  Using the bootstrap approach, Seol (2016) investigated the 

pattern of the bootstrapped CIs due to sample sizes and test lengths with polytomous 

data.  A total of 25 testing conditions resulting from five levels of sample size (from 200 

to 1,000 by an increment of 200 cases) and test length (10, 20, 40, 60, and 80 items) were 

examined.  Study results indicated that mean and standard error values were fairly close 

to their theoretical values of unity and zero for MNSQ statistic, INFIT, and OUTFIT 

indices.  The study also suggested that the 95% CIs for the INFIT and OUTFIT mean 

square values became narrower as the sample size and the test length increased.  The CI 

values for the standardized version of these statistics were fairly stable across different 

sample size and test length conditions.  Even though variability of the INFIT and 

OUTFIT mean square values were partially consistent with the Wang and Chen’s study 

(2005), the bootstrapped critical values were still different from the conventional criterion 

of (0.6, 1.4) for a polytomous scale suggested by Wright and Linacre (1994).  The 

researcher also concluded that the bootstrap critical values could be used to detect 

misfitting items because they offered a reasonable alternate.   

 To investigate the magnitude of item misfit, DeMars (2017) utilized the 

conjunctive tests of statistical significance and effect size.  Her simulation study 

contained 46 items and two levels of sample size: 100 and 5,000.  The majority (i.e., 40) 

of the 46 simulated items fit the Rasch model, and six items were misfitting with various 

issues, e.g., additional item parameter, extremely easy, off-target to the ability estimates, 

etc.   Results showed that the means and medians of the INFIT mean square values 
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(MNSQ) were the same across sample sizes for well-fitting and poorly-fitting items.  

Even though the OUTFIT mean square values yielded the same mean and median values 

for items that fit, these values appeared to be influenced by the sample size in the worst-

fitting items.  The Type I error rates, based on the ZSTD values, were used to flag items 

based on statistical significance instead of magnitude of misfit.  Results suggested that 

the ZSTD values of the INFIT and OUTFIT statistics reasonably followed a standard 

normal distribution in middle difficult items.  The extreme items resulted in the departure 

from the normal distribution in the tails, and the rejection rates were somewhat lower 

than the traditional 2.5% for a two-tail distribution.  When both the MNSQ values and the 

ZSTD values were taken into account, the researcher concluded that the MNSQ indices 

could be used as effect size measures along with statistical significance information from 

the ZSTD indices for a better hit rate.     

The most recent study on fit statistic in educational research was conducted by 

Hodge and Morgan (2017).  This study investigated the stability of the INFIT and 

OUTFIT MNSQ estimates as compared to the commonly used rule-of-thumb critical 

values.  This simulation study used the applied data set from a clinical exam for the 

American Chiropractic Neurology Board Certification which involved 196 candidate 

examinees and 215 dichotomous test items.  Results from this study were consistent with 

some previous studies and the researchers concluded that the rule-of-thumb critical 

values suggested for fit statistics may be inappropriate in detecting item misfit.   

As the use of Rasch models has extended from educational assessment to health 

research, medical researchers drew samples with replacement from two Likert scale 

instruments and investigated the relationship between total fit statistics and sample size 
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for two polytomous models: the rating scale and the partial credit (Smith, A. B. et al., 

2008).  With the eight sample sizes from 25 to 3,200 with the latter sample size being 

twice as much as the previous one (i.e., 25, 50, 100, etc.), the study concluded that 

MNSQ values were relatively invariant of sample size for polytomous data, whereas 

ZSTD values were highly sensitive to sample size.  It also suggested that mean square 

statistic could identify item misfit to the model using published recommended ranges of 

(0.7, 1.3).     

In summary, the previous research on Rasch total item fit statistics appears to 

endorse the use of ZSTD values over the MNSQ values to identify misfitting items; 

however, researchers still cautioned that the traditional cut-off values of ±2.0 for ZSTD 

might not always be appropriate for screening (Wang & Chen, 2005).  Results from the 

collection of studies suggest that the ZSTD values of the total item fit statistic appear to 

be more stable in comparison to the MNSQ values.  In addition, the studies found that the 

MNSQ values of both INFIT and OUTFIT statistic yielded variability that changed as the 

sample size increased (DeMars, 2017; Hodge & Morgan, 2017; Seol, 2016; Smith, R. M. 

et al., 1998; Su et al., 2007; Wang & Chen, 2005) and test length increased (Seol, 2016).  

Meanwhile, the t-transformation ZSTD values remained more stable across different 

sample size and test length conditions but did not follow a normal distribution (Seol, 

2016; Wang & Chen, 2005).  However, a different conclusion was observed where 

MNSQ statistics were favored over their ZSTD counterparts in polytomous data because 

the latter were highly sensitive to sample size (Smith, A. B. et al., 2008).    

While these studies have informed the field, there are shortcomings that are 

apparent.  In these studies, most sample size of examinees ranged from 100 to 3,200 and 
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majority of the test length conditions focused on fewer than 60 items.  However, the 

number of students who participate in a state-level testing is typically much larger, 

ranging from 1,000 to over 50,000.  Additionally, state standardized testing programs 

typically employ multiple-choice tests that range between 45 items (e.g., 4th grade 

Science in SCPASS in 2015) to 66 items (e.g., 8th grade Social Studies in SCPASS in 

2015).  Thus, investigation of larger sample sizes and longer tests is needed to provide 

accurate recommendations to the field.  Additionally, none of these previous studies has 

further investigated how well the suggested statistics perform in screening items with 

misfit (i.e., detecting measurement disturbances).   

Purpose of the Present Study  

The current study proposes to further investigate how Rasch item fit statistics 

(i.e., the total item INFIT and OUTFIT mean square values [MNSQ], the total item 

INFIT and OUTFIT standardized values [ZSTD]) performed, under situations that mirror 

those found with large-scale assessment settings.  Findings from previous studies suggest 

that the widely used rule-of-thumb critical ranges are not appropriate to detect misfitting 

items, and the literature has remained inconclusive what cut-off values should be used to 

detect misfitting items.  Further, it is still unknown what the associated Type I error rates 

are for the total item fit mean square values.  In addition, the question of accuracy of all 

these values in detecting measurement disturbances remains.  The proposed study 

attempts to address these three questions in an hope to shed new light on the use of these 

Rasch-based item fit statistics.  Additionally, as systematic measurement disturbances 

were simulated (i.e., DIF investigation), between-item fit statistics OUTFIT MNSQ and 
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ZSTD were used to investigate the power and error rates associated with the obtained 

critical values.  

When the stakes are high for state-wide assessment programs, it is imperative that 

items with solid psychometric properties are selected and included in the assessment.  As 

this study investigates item fit statistic with situations that are typically encountered in 

large-scale testing situations, the results can provide valuable information regarding if 

item performance is as anticipated.   
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CHAPTER 3 

METHODOLOGY 

Item quality is vital in developing an efficient and fair test that provides 

stakeholders consistent and useful information about test takers.  When the Rasch model 

is used, traditionally, the mean square (MNSQ) values and the standardized (ZSTD) 

values of the weighted and the unweighted total fit indices have been used to evaluate 

item quality.  However, studies have found some results from simulated data on accuracy 

of these indices and questioned the general rule-of-thumb cut-off guidelines suggested by 

Wright and Linacre (1994).  The purpose of the current study was to investigate which fit 

indices were more accurate in detecting misfitting test items in large-scale testing, how 

accurate they were, and how well they could detect measurement disturbances.   

This chapter will briefly describe the design of the simulation study and how data 

were generated.  It will then detail why and how different levels in each condition were 

determined (e.g., number of items, number of test takers, etc.).  Finally, the chapter will 

provide a brief analysis plan on how to evaluate different total item fit statistics and how 

to examine the power of the obtained values in detecting simulated systematic item misfit 

through between-item fit statistics.  

Simulation Study 

A simulation study was conducted to examine the impact of sample size and test 

length on total item fit statistics, when the Rasch dichotomous model was used for 

analysis.  Both the MNSQ values and the ZSTD values of the INFIT weighted and the
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OUTFIT unweighted statistics were investigated, as they are the widely used indices to 

detect misfitting items (Wolfe, 2013).  To investigate total item fit indices, the WinGen 

program (v. 3; Han, 2007) was used to generate the initial response patterns for the 

original data set, and the Winsteps® software package (v. 4.4.8; Linacre, 2019c) was 

used for subsequent data simulation due to the additional data manipulation process from 

WinGen to Winsteps®.   

To examine power of the obtained indices, R (v. 3.5.3; R Development Core 

Team, 2019) was applied to generate responses to items with and without measurement 

disturbances3.  Winsteps® was then used in all item fit analyses including fit indices and 

power investigation.  Finally, since Winsteps® only produces item fit statistical results on 

one particular data set, the SAS® software package (v. 9.4; SAS Institute Inc., 2013) was 

utilized to organize results from all replications as well as to calculate summary of 

results.  In particular, a Macro (Miller, 2004) was included as part of the codes to 

summarize Winsteps® results. 

 The data sets constructed for the study used pre-specified parameters for person 

ability and item difficulty estimates.  Specifically, person ability estimates were 

generated from a normal distribution with a mean of zero and a standard deviation of 1 

[i.e., N (0, 1)], which corresponds to a commonly used population distribution.  The item 

parameters were generated from a uniform distribution [i.e., U (−2, +2 logits)], which 

suggests items would fit the Rasch dichotomous model (Wright & Douglas, 1977).   

Sample size and test length were varied to examine their impact upon the 

accuracy of different total item fit statistics, as well as their associated Type I error rates.  

 
3 R codes from a previous study (Pompey, Jiang, Burgess, & Lewis, 2019) on DIF 

analyses were modified for data generation. 
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The goal was to examine critical values and their frequencies of occurrence under various 

situations manipulated in the study.  For the simulation, the critical values are closely 

related to Type I error rates and power when data are misfitting.  Furthermore, 

measurement disturbances were simulated to investigate the ability of the chosen 

statistics in detecting these disturbances.  The disturbances were simulated to 

approximate uniform DIF (i.e., the same DIF across all ability levels) and they were 

simulated in two-group differences with a balanced design (i.e., the same number of test-

taking individuals in each group).  To demonstrate magnitude of DIF, items exhibiting 

moderate to large DIF as categorized “C” in the Educational Testing Service (ETS) 

guidelines (Zieky, 1993) were set at varied percentages of items present in the test.   

The ETS DIF analysis procedures use the Mantel-Haenszel (MH) statistic (Mantel 

& Haenszel, 1959) and a delta scale of item difficulty (Holland & Thayer, 1985) to 

categorize the magnitude of item DIF.  Developed by Holland and Thayer (1985), the 

MH D-DIF index is calculate as:   

MH D-DIF  =  −2.35ln(𝛼̂𝑀𝐻) ,              [8] 

where the constant odds-ratio is estimated as (Mantel-Haenszel, 1959):  

𝛼̂𝑀𝐻  =   
∑ 𝑁𝑅1𝐾𝑁𝐹0𝐾/𝑁𝐾𝐾

∑ 𝑁𝑅0𝐾𝑁𝐹1𝐾/𝑁𝐾𝐾
                                        [9] 

             Note: NR1K and NF1K refer to the numbers of examinees in the reference 

and focal groups who answer correctly; NR0K and NF0K represent the 

numbers of examinees in the reference and focal groups who answer 

incorrectly; NK is the total number of examinees. 

 

A positive value of MH D-DIF suggests an item is estimated to be more difficult for the 

reference group (i.e., the group that is anticipated to be advantaged by a measure; 

“Differential Item Functioning”, n.d.), whereas a negative value suggests an item is more 
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difficult for the focal group (i.e., the group that is suspected to have a disadvantage in a 

measure; “Differential Item Functioning”, n.d.) and favors the reference group (Zwick, 

2012).   

 Based on the magnitude of this index as well as its statistical significance, items 

with this statistic not significant at the .05 level or its absolute value is smaller than 1 are 

categorized as “A” (negligible or nonsignificant DIF).  Items with the MH D-DIF 

significantly greater than 1 in absolute value at the .05 level as well as an absolute value 

of 1.5 or greater are considered “C” (moderate to large DIF).  Items that do not meet the 

criteria for “A” or “C” are deemed having slight to moderate DIF (Zwick, 2012).  The 

ETS guidelines recommend test developers not to select any “C” items unless they are 

essential for important test specifications and the factors contributing to their high DIF 

level are determined not to represent bias (Zieky, 2003).  Category “C” items are usually 

revised or excluded from future test administrations; therefore, it is imperative that 

obtained statistics can accurately capture these items.  

Data Generation 

Parametric bootstrapping was used to generate data.  Introduced by Efron (1979), 

the bootstrap method is a statistical procedure that relies on random resampling to obtain 

various estimates like standard errors, CIs, etc.  As researchers (Hesterberg, Moore, 

Monaghan, Clipson, & Epstein, 2005) pointed out, distributions and quantities from 

bootstrapping do not differ much if a large number of resamples (typically about 1,000) 

are used to generate a probability distribution of a statistic of interest.  The parametric 

bootstrap resamples from a hypothetical distribution and this method is known to 

“produce sampling distribution estimates that exhibit bias, spread, and shape similar to 
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that of the parametric sampling distribution (Wolfe, 2013, p. 4)”.  This method requires 

fewer assumptions to be met in estimating sampling distributions (e.g., distributions do 

not need to be normal, sample sizes from empirical data do not need to be large; 

Hesterberg et al., 2005).   

The bootstrapping method allows researchers to derive estimates for complex 

estimators of complex parameters of the distribution (Hilmer & Holt, 2000).  A major 

advantage of this method is the appropriateness to control and check the stability of the 

results.  They are asymptotically consistent, suggesting that the estimates of the 

asymptotic distribution of a parameter are consistent (Ritesh, 2016).  While it is 

impossible to repeatedly sample a large number of examinees to take and retake an 

assessment, simulating the data in various testing situations renders researchers a realistic 

tool to calculate the statistics of interest.  Furthermore, employing bootstrapping methods 

to randomly sample replacement data can provide consistent results.   

Nevertheless, the bootstrapping procedure used in Winsteps® creates the bounds 

of the population given the target characteristics and draws unique samples of a specific 

size from the pre-determined distribution in the data generation.  The stochastic structure 

of the data is necessary for the Rasch-based fit statistics to function accurately.  In other 

words, sampling needs to be a random process for unique samples to be representative of 

the larger population.   Violation of this process will result in over- or under-sampling of 

certain classes/categories of a data set, thus impact the accuracy of data analysis.  For 

instance, if a sample of size 100 was drawn and then multiplied by 500 in order to obtain 

a sample of 50,000, this will limit the performance of fit indices as the data generated is 

limited in terms of variability, response conditions, and person/item characteristics.  The 
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end result of such a procedure would adversely affect accuracy of the results (R. Smith, 

personal communication, July 15, 2020).  As the Users’ Guide states, the procedure used 

by Winsteps® creates resamples “with replacement from the current dataset” (Linacre, 

2019d), and this might impact the accuracy of results.  Details of the simulation study 

follow. 

Tested fit statistics.  Generally, the weighted total item fit statistic (i.e., the 

INFIT) is more sensitive to unexpected response patterns on items when items are 

roughly targeted on the test taker’s ability level; and the unweighted total item fit statistic 

(i.e., the OUTFIT) is more sensitive to unexpected responses on items that are extreme 

compared to the test taker’s ability as being too easy or too difficult (Linacre, 2019a).  

These fit statistics used are popular indices favored by psychometricians and researchers 

to identify misfitting items under the Rasch model.   

Historically, the established rule-of-thumb values for the MNSQ fit statistics 

consider 0.7 for the lower limit and 1.3 for the upper limit.  Items with values beyond 

these limits are deemed misfitting to the model.  Under high-stakes situations, these 

values may be altered to bounds of 0.8 and 1.2 (Wright & Linacre, 1994).  Additionally, 

the traditional ±2.0 are adopted as the limits for standardized values to detect misfit 

(Wright & Linacre, 1994).  For large sample sizes, the values of ±3.0 are recommended 

(Iramaneerat et al., 2007).  However, previous simulation studies investigating the total 

fit statistic (Hodge & Grant, 2017; Wolfe, 2013) have concluded that the rule-of-thumb 

guidelines were inappropriate in many applied situations.  Using the MNSQ values may 

result in under-identifying misfitting items while the ZSTD values might over-identify 

misfitting items when the sample size is large (Bond & Fox, 2012).  Furthermore, the 
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suggested MNSQ values indicate that their distribution is not symmetrical; therefore, 

different critical values are needed for the upper and the lower ends (Smith et al., 1998).  

The current study attempted to simulate testing situations with various large numbers of 

test takers and multiple-choice items to investigate how the suggested total item fit 

indices function.  Also, their associated critical values were examined to obtain the 

associated Type I error rates for these testing situations.  Moreover, measurement 

disturbances (e.g., a two-group DIF like in gender) were simulated to test the ability of 

the obtained critical values to detect the items demonstrating differential functioning 

across groups.   

Test length.  The currently adopted assessments in South Carolina use multiple-

choice items in most state assessments and all the national assessments.  In test design, 

tests of 30 to 60 multiple-choice items appear to be commonly used for state tests 

(Burton, 2006).  To mirror empirical testing situations, the total number of items for the 

original data of this study included three conditions: 30, 50, and 70 multiple-choice items, 

which suggests medium to long tests.  The items were randomly sampled from a uniform 

distribution that ranges from −2 and +2 of the logit scales.   

Sample size.  In this study, subject sample size is important because chi-squared 

related test statistics used to evaluate item quality are affected by the number of test 

takers.  According to the 2012-2013 National Center for Education Statistics (NCES, 

2017), the number of public high school graduates ranged from 3,961 (District of 

Columbia) to 422,125 (California).  Thus, in a typical state-wide assessment situation, the 

number of test takers can reach from a few thousand to hundred-thousands of students.  

For instance, South Carolina students at the elementary levels (3rd to 5th grades) take the 
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College-and-Career-Ready Assessments (SC READY; SC Department of Education, 

2016), Palmetto Assessment of State Standards (SCPASS; SC Department of Education, 

2008), samples of them are selected to take the National Assessment of Educational 

Progress (NAEP; National Center for Education Statistics, 1969), and some may take 

Measures of Academic Progress-Reading and Mathematics (MAP®; Northwest 

Evaluation Association, 2013).  These students may participate in other district specific 

testing programs.  In addition to some of these, some advanced middle level students (6th 

to 8th grades) take End-of-Course Examination Program (EOCEP; SC Department of 

Education, 2006), and high school students (9th to 12th grades) take the Scholastic 

Assessment Test (SAT; College Board, 1993) or the American College Testing (ACT®; 

ACT Inc, 1959) for college entrance qualification, in addition to EOCEP if not taken in 

middle school.   

A quick review of the SCPASS program during the time period from 2009-2015 

showed that the number of test-taking students were over 50,000 for Writing, English 

Language Arts (ELA), and Math in each of the 4-8 grades, over 20,000 for Science and 

Social Studies for Grades 3, 5, 6, and 8, and over 50,000 for Grades 4 and 7 in these two 

subjects.  The number of test takers of the EOCEP and the High School Assessment 

Program (ELA and Math, HSAP; SC Department of Education, 2009) were also in the 

over 50,000 range from 50,747 (2011-12 HSAP Math) to 62,655 (2016-17 EOCEP 

Math).  Review of testing situations within South Carolina helped to inform the sample 

size conditions used in this study.  Technology has rendered an assessment team the 

ability to obtain test and item latency (i.e., time required to complete a test or answer a 

question item; Quan, Park, Sandahl, & Wolfe, 1984) information (Olsen, Maynes, 
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Slawson, & Ho, 1989), and a number of 40,000 to 50,000 test takers has become 

commonplace for item calibration/test equating (R. Smith, personal communication, 

December 12, 2019).  Here, sample sizes of 5,000, 10,000, 25,000 and 50,000 were 

crossed for the three test length conditions. 

  Condition of measurement disturbances and DIF magnitude.  There are 

various types of disturbances, some are random (e.g., guessing, carelessness) while others 

are more systematic (e.g., DIF, rater effect, test format).  Even though systematic 

disturbances do not result in “inconsistent measurement”, they may still “cause test 

scores to be inaccurate and thus reduce their practical utility” (Crocker & Algina, 2008, 

p. 106).  DIF, one type of systematic error, also introduces construct-irrelevant variables 

that would impact accuracy of the statistical conclusion and score interpretation.  The 

present study attempted to use simulated DIF measurement disturbances to evaluate how 

the obtained results perform in detecting poor-fitting items.   

 Various components can be designed in the item DIF, for instance, how DIF is 

distributed in different groups, how many subgroups with DIF are present in a given 

testing situation, how many test-taking subjects are in each group, etc.  For this particular 

study, the item DIF were considered as uniform, suggesting “the statistical relationship 

between item response and group is constant for all levels of ability” (Awuor, 2008, p. 5).  

Uniform DIF indicates no interaction between group memebership and ability level in 

item response patterns, and when a DIF item favors one particular subgroup, only the 

item difficulty estimate (i.e., item b-parameter) differs among subgroups (Camilli & 

Shepard, 1994) as in Rasch models.  When an item favors one particular subgroup, test 

takers from that group would have a better chance of providing a correct answer.  In other 
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words, an item would be easier for a subgroup of test taker because the item is biased 

against test takers from the other subgroup (for instance, a reading question about car 

mechanism may favor male test takers vs female test takers).  Also, the study used a 

balanced two-group design: one reference, and the other focal; and each subgroup had the 

same number of test-taking students because the presence of unequal sample sizes may 

requre statistical adjustment (Rusticus & Lovato, 2014).   

 Following Shepard et al.’s suggestion (Shepard, Camilli, & Williams, 1985), DIF 

was introduced through altering the item b-parameter (i.e., the difficulty estimate).  The 

items that exhibit DIF were pre-selected and their percentage accounted for 4%, 10%, 

20%, and 40%  respectively of the total number of items.  These percentages reflect the 

number of biased items “typically found in studies of ethnic, race, or gender bias (5% to 

10%)” (Miller & Oshima, 1992, p. 383) as well as studies of instructional effects (20% to 

40%) (Miller & Linn, 1988).  

Another major component in DIF is its magnitude.  Following the ETS’ 

classification (Zieky, 2003), a “C” item exhibits moderate to large DIF.  The group 

difference is expressed on the delta scale of item difficulty (i.e., MH D-DIF), and the “C” 

items have an MH D-DIF statistic that is significatenly greater than 1.0 and its absulte 

value of 1.5 or greater.  Selected items exhibited a range of moderate to large DIF 

including 0.35, 0.45, 0.55 and 0.65 logits higher in item difficulty for the reference group.  

In other words, specific items were more difficult for the reference group.  Overall, this 

translates into a total of  4 (sample size) x 3 (test length) x 4 (proportion of DIF items) x 4 

(magnitude of DIF) = 192 conditions for DIF detection.  Here, the between-group DIF   

was investigated to determine if items differ by subgroups.  



www.manaraa.com

 

56 

Data Analysis 

To assist in determining the item misfit for test development, this study examined 

the accuracy of total item fit statistics (i.e., MNSQ values and ZSTD values of INFIT and 

OUTFIT indices), their associated Type I error rates for the rule-of-thumb MNSQ and 

ZSTD cut-off values, and power of the obtained fit statics to detect simulated 

measurement disturbances.  To examine the accuracy of total item fit statistics, first, the 

average fit statistic estimates across the test (i.e., the mean, standard deviation, the 

minimum value, and the maximum value) were computed per each condition.  Then, 

these four descriptive indices from the 1,000 replications were calculated and examined 

across all test length and sample size conditions.  These values provided an estimate of 

the variability across the estimates and were compared to the expected values for each fit 

index (i.e., mean value of 1 for MNSQ, and mean of 0 with standard deviation of 1 for 

ZSTD values).   

The current study also examined the Type I error rates associated with the rule-of-

thumb values suggested for assessment situations.  This is notable, especially for the 

MNSQ values as the distribution of values is not symmetrical.  If the error rates differ 

from the rule-of-thumb Type I error rate of .05, critical values that falsely identify item 

misfit at the 5% were examined.   

To examine power, this study used the hit rate to assess the accuracy of 

identifying poorly fitting items.  The hit rate was reflected by the true positive cases and 

it was calculated by summing the total number of correctly identified DIF items, dividing 

by the number of items simulated with DIF, and then averaging over the 1,000 simulated 

replications.  The hit rate were calculated for each of the 192 (12 crossed sample size and 
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test length conditions x 4 percentages of DIF items in test x 4 magnitudes of DIF items) 

testing conditions, and a hit rate that reaches the 70% threshold was considered 

acceptable power for DIF detection as suggested by González-Romá, Hernández, and 

Gómez-Benito (2006).  It was hoped that the obtained critical values would have 

adequate power to accurately detect poorly fitting items.  Furthermore, the false positive 

rates (i.e., percentages of mis-identification of well-fitting items, Type I error rates) were 

calculated through summing the total number of incorrectly identified non-DIF items, 

dividing by the number of items simulated without DIF, and then averaging over the 

replications.    

For indices to detect item DIF, the between-item fit item statistics for MNSQ and 

ZSTD were used instead of the total fit statistic as in the investigation of total item fit 

statistic accuracy and Type I error rates (i.e., Research Questions 1 and 2).  The total fit 

statistic uses response information from all total scores while the between-item fit 

statistic takes into account differences in subpopulation membership (Smith, 1994). This 

is due to results from Smith (1994) which noted that the between-fit statistics were more 

sensitive to systematic measurement disturbances.  Mathematically, the unweighted 

between-item fit statistic is expressed as:  

𝑥2 (𝑈𝐵)𝑖  =  
1

𝐽 − 1 
   ∑

( ∑ 𝑥𝑛𝑖 
𝑁𝑗
𝑛𝜖𝑗
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𝑁𝑗
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)2

∑ (𝑝𝑛𝑖 (1 − 𝑝𝑛𝑖 )
𝑁𝑗
𝑛𝜖𝑗

)

𝐽
𝑗=1  ,          [10] 

where J represents the number of subpopulations, and 𝑁𝑗 is the number of examinees in 

each subpopulation (Smith, 1994).  The weighted between-item fit statistic (Smith, 1994) 

is: 
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Both can be transformed through the cube-root transformation (Wright, 1980)  

t  =  ( 𝑀𝑆1 3⁄  − 1 ) ( 3 𝑆⁄  ) + ( 𝑆 3⁄  )           [12] 

into a standardized value where S is the SD of 𝑀𝑆 (𝑈𝐵)𝑖  or 𝑀𝑆 (𝑊𝐵)𝑖 (Smith, 1994).  

The SD of these MS is estimated by:   

S  =  [ 2/( J −  1 ) ]1/2 .              [13] 

Since the simulated measurement disturbances were systematic error, the between-item 

fit statistics calculated through the above formulas (i.e., Formulas [10]-[13]) should be 

used in the power analysis (i.e., Research question 3) as suggested by Smith (1994). 

Summary 

The goal of this simulation study was to examine the Type I error rates and power 

associated with total item fit statistics in the Rasch dichotomous model.  Person ability 

and item difficulty estimates were first created to obtain response patterns for analyses.  It 

is statistically reasonable to make the assumption that test takers’ ability levels follow a 

normal distribution unless a particular group of individuals is sampled.  Furthermore, 

Rasch models define items that range between −2 and +2 logits as “fitting” (Bond & 

Fox, 2012).  Person abilities were randomly sampled from a normal distribution N (0, 1) 

and item difficulties were randomly sampled from a uniform distribution U (−2, +2 

logits).     

For the simulated data, the numbers of items on a test as well as numbers of test 

takers were manipulated.  In an attempt to mirror the situations for large-scale testing 

programs, the number of test items were 30, 50, and 70; and the number of examinees 

were 5,000, 10,000, 25,000, and 50,000.  This translated into a combination of 12 crossed 

conditions to examine the MNSQ values, the ZSTD values, as well as the associated 
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Type I error rates for the approximate critical values for each condition.  Also, 

comparisons across the conditions that match were examined for general trends and/or 

patterns.     

For a testing situation, various proportions of all items (i.e., 4%, 10%, 20%, and 

40%) were manipulated to exhibit moderate to large uniform DIF as defined “C” 

category by the ETS guideline (Zieky, 2003).  The objective was to investigate the power 

of these critical values to detect these measurement disturbances.  Results from the 

simulated data and simulated measurement disturbances may provide a glimpse on how 

the total and between-item fit statistics perform in detecting item bias.  Researchers and 

practitioners may find the information useful for item review and instrument validation.   

In summary, the simulation study using the original data consists of a fully 

crossed design with 12 cells: 3 levels of item numbers (i.e., 30, 50, and 70) x 4 sample 

sizes (5,000, 10,000, 25,000, and 50,000 test-taking students).  The investigation on the 

ability of the chosen indices to detect disturbances consisted of two additional conditions 

(4 levels of items with a two-group uniform moderate to large DIF, i.e., 4%, 10%, 20% 

and 40%; 4 magnitudes of moderate to large DIF, i.e., 0.35, 0.45, 0.55 and 0.65 logit 

units), and this resulted in a fully crossed design with 192 cells: 12 x 16.  A total of one 

thousand replications were run for each design cell as described by Efron (1979) and 

Wolfe (2013).  
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CHAPTER 4 

RESULTS 

 This chapter reports the results for the three focal research questions.  Research 

Question 1 examined sensitivity of total item fit statistic (i.e., INFIT mean square and 

standardized values, OUTFIT mean square and standardized values) in large-scale testing 

situations under the Rasch dichotomous framework.  To determine differences in these 

four fit indices, results for the mean square (MNSQ) and standardized (ZSTD) values of 

the two versions of item fit statistics (i.e., INFIT and OUTFIT) are provided.   

 Research Question 2 then investigated the Type I error rates associated with the 

rule-of-thumb critical values (i.e., 0.7 and 1.3 for MNSQ values and −2.0 to +2.0 for 

ZSTD values in general, Wright & Linacre, 1994; for high-stakes situations, 0.8 and 1.2 

as suggested, Wright & Linacre, 1994; and for large samples, −3.0 to +3.0, Iramaneerat 

et al.,  2007).  Specifically, the fit statistics for these two questions were total item fit 

indices.   

 Subsequently, Research Question 3 used the true positive hit rates to evaluate the 

power of the obtained critical values in detecting simulated item misfit in the previously 

stated testing conditions, and the 70% threshold was considered acceptable power 

(González-Romá et al., 2006).  As the false positive rates (i.e., Type I error rates, items 

that are good-performing but flagged as exhibiting DIF) were high in many situations, 

conditions with well-performing items falsely identified as misfitting were examined and 

discussed.  For this question, between-item fit statistics were used instead of the total 
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item fit indices due to their sensitivity to systematic measurement disturbances (Smith, 

1994). 

Item Fit Statistics 

Total item fit information was calculated for each simulated data set.  INFIT and 

OUTFIT descriptive summary, including item mean, standard deviation, minimum and 

maximum values were calculated across 1,000 replications for each of the 12 study 

conditions.  Descriptive information on the mean square values is presented below in 

Table 4.1 and the descriptive information on the standardized values is listed in Table 

4.2.   

Across the replications, summary information (see Table 4.1 below) indicated that 

the weighted and the unweighted mean square average values were extremely consistent 

across sample size and test length conditions.  Almost all the average MNSQ values 

reached the expected values of 1.0 with a standard deviation value close to 0.0.  This was 

expected and suggested that the simulation was working as intended.  

Table 4.1 Descriptive Information on Mean Square Statistics 

 INFIT OUTFIT 

 MEAN SD MIN. MAX. MEAN SD MIN. MAX. 

30 Items 

5,000 Test Takers 

Mean 0.999 0.014 0.971 1.028 1.000 0.036 0.931 1.088 

SD 0.001 0.002 0.007 0.008 0.004 0.006 0.017 0.030 

Min. 0.996 0.008 0.950 1.010 0.986 0.021 0.860 1.030 

Max. 1.001 0.020 0.990 1.060 1.016 0.059 0.970 1.260 

10,000 Test Takers 

Mean 0.999 0.010 0.979 1.020 1.001 0.025 0.954 1.064 

SD 0.001 0.001 0.005 0.006 0.003 0.004 0.012 0.022 

Min. 0.997 0.007 0.960 1.010 0.991 0.014 0.910 1.020 

Max. 1.001 0.014 0.990 1.040 1.012 0.044 0.980 1.200 

25,000 Test Takers 

Mean 0.999 0.007 0.987 1.012 1.000 0.015 0.972 1.039 

SD 0.001 0.001 0.005 0.004 0.002 0.002 0.007 0.014 
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Min. 0.997 0.004 0.970 1.010 0.994 0.009 0.940 1.010 

Max. 1.001 0.010 0.990 1.030 1.005 0.024 0.990 1.100 

50,000 Test Takers 

Mean 0.999 0.005 0.990 1.010 1.000 0.011 0.980 1.028 

SD 0.001 0.001 0.001 0.002 0.001 0.002 0.005 0.009 

Min. 0.998 0.002 0.980 1.000 0.996 0.006 0.960 1.010 

Max. 1.001 0.008 0.990 1.020 1.004 0.018 0.990 1.070 

50 Items 

5,000 Test Takers 

Mean 0.999 0.013 0.971 1.028 0.999 0.029 0.936 1.080 

SD 0.001 0.001 0.006 0.006 0.003 0.004 0.014 0.028 

Min. 0.997 0.009 0.950 1.020 0.990 0.017 0.860 1.030 

Max. 1.001 0.018 0.980 1.060 1.013 0.050 0.970 1.240 

10,000 Test Takers 

Mean 0.999 0.009 0.979 1.020 0.999 0.020 0.955 1.052 

SD 0.000 0.001 0.004 0.005 0.002 0.002 0.010 0.017 

Min. 0.997 0.007 0.960 1.010 0.994 0.012 0.900 1.020 

Max. 1.001 0.014 0.990 1.040 1.005 0.029 0.970 1.130 

25,000 Test Takers 

Mean 0.999 0.006 0.988 1.012 1.000 0.014 0.970 1.037 

SD 0.000 0.001 0.004 0.004 0.001 0.002 0.008 0.011 

Min. 0.998 0.004 0.980 1.010 0.996 0.009 0.940 1.010 

Max. 1.001 0.009 0.990 1.030 1.004 0.020 0.980 1.090 

50,000 Test Takers 

Mean 0.999 0.005 0.990 1.010 0.999 0.010 0.978 1.025 

SD 0.000 0.001 0.001 0.001 0.001 0.001 0.005 0.008 

Min. 0.997 0.003 0.980 1.000 0.997 0.007 0.960 1.010 

Max. 1.000 0.007 0.990 1.020 1.003 0.014 0.990 1.060 

70 Items 

5,000 Test Takers 

Mean 0.999 0.013 0.970 1.029 0.999 0.028 0.935 1.081 

SD 0.001 0.001 0.006 0.006 0.002 0.003 0.014 0.029 

Min. 0.997 0.009 0.950 1.020 0.994 0.020 0.880 1.040 

Max. 1.001 0.017 0.980 1.060 1.007 0.044 0.960 1.270 

10,000 Test Takers 

Mean 0.999 0.009 0.978 1.020 0.999 0.021 0.951 1.059 

SD 0.000 0.001 0.004 0.004 0.001 0.002 0.011 0.019 

Min. 0.998 0.007 0.970 1.010 0.994 0.015 0.890 1.030 

Max. 1.000 0.012 0.990 1.040 1.005 0.031 0.970 1.160 

25,000 Test Takers 

Mean 0.999 0.006 0.987 1.012 0.999 0.013 0.970 1.035 

SD 0.000 0.001 0.005 0.004 0.001 0.001 0.007 0.010 

Min. 0.998 0.005 0.970 1.010 0.997 0.009 0.940 1.010 

Max. 1.000 0.008 0.990 1.020 1.003 0.017 0.980 1.080 

50,000 Test Takers 

Mean 0.999 0.005 0.990 1.010 0.999 0.009 0.978 1.025 



www.manaraa.com

 

63 

SD 0.000 0.001 0.001 0.001 0.001 0.001 0.005 0.007 

Min. 0.998 0.003 0.980 1.000 0.997 0.006 0.960 1.010 

Max. 1.000 0.006 0.990 1.010 1.002 0.013 0.990 1.060 

  

The average OUTFIT MNSQ values were slightly more varied, yielding larger 

standard deviation values in comparison to their INFIT counterparts (e.g., mean SD of 

0.00183 OUTFIT vs 0.00058 INFIT for SD values across all 12 conditions); however, the 

differences were small enough to be considered negligible.  Furthermore, variability 

across the OUTFIT MNSQ mean values slightly decreased with as the number of test 

takers and/or items increased.  For example, with a test of 30 items, the standard 

deviation value of the mean values was 0.004 for 5,000 test takers, 0.003 for 10,000 test 

takers, to 0.002 for 25,000 and 0.001 for 50,000 test takers.  Similar patterns were 

observed for a test of 50 and 70 items holding constant the number of test items.  Overall, 

the number of test takers and test items appeared to exert a small effect on the mean of 

the weighted and unweighted mean square values.  

The standard deviation of the MNSQ values appeared to differ for weighted and 

unweighted statistics.  Consistent with Smith et al. (1998), here, mean SD values of the 

OUTFIT statistic were almost doubled or tripled of those of the INFIT statistic (e.g., for 

30 items with 5,000 test takers, the mean INFIT SD was 0.014 and OUTFIT SD was 

0.036), suggesting that Type I error rate and critical values cannot be the same for the 

MNSQ values of these two indices.  Also, it appeared that the mean SD decreased as the 

number of test takers increased.  For example, for the INFIT statistic with a 50-item test, 

the mean SD values declined from 0.013 with 5,000 test takers to 0.005 with 50,000 test 

takers.  Similarly, for the OUTFIT statistic for the same test, the SD values dropped from 

0.029 with 5,000 testing students to 0.010 with 50,000 students.  The length of the test; 
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however, did not appear to have much impact on the SD of these two item fit indices.  

Values were relatively constant, with INFIT values from 0.007, 0.006 to 0.006 for 25,000 

test takers and from 0.015, 0.014, to 0.013 for 25,000 test takers in OUTFIT across the 

three test length conditions.   

Similar patterns were observed with the range of mean INFIT and OUTFIT 

MNSQ indices.  Even though the range of these two indices was slightly different, the 

OUTFIT statistic reported slightly wider ranges (i.e., 0.157 for OUTFIT and 0.057 for 

INFIT for a testing situation of 30 items and 5,000 test takers).  Overall, the mean range 

of both indices decreased as the number of test items increased.  For example, in a 70-

item test, the OUTFIT statistic (average) range declined from 0.146 (1.081 – 0.935), 

0.108 (1.059 – 0.951), 0.065 (1.035 – 0.970) to 0.047 (1.025 – 0.978) as the number of 

test takers increased from 5,000 to 50,000.  This finding was also consistent with the 

previous Smith et al. (1998) study, in which the mean range for the INFIT and OUTFIT 

statistic decreased as the number of test takers increased.  The mean range values of the 

OUTFIT were less than half of those INFIT values (i.e., the INFIT average range 

differences were 0.059, 0.042, 0.025 and 0.020 for a test with 70 items).   

 In comparison to the MNSQ values, ZSTD values were a bit different (see Table 

4.2).  The average t-transformation standardized values were close to their expected 

values of 0.0 with a standard deviation close to 1.0.  The OUTFIT ZSTD values were 

closer to the expected values than their INFIT counterparts, but exhibited more variation, 

with larger SD values.  For instance, in a 30-item test, the SD of mean for the weighted 

statistic was approximately 0.033 regardless of the number of test takers, while this the 

unweighted SD of the mean was approximately 0.097, almost three-fold.  Overall, the 
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numbers of test items and test takers did not appear to have an influence on the ZSTD 

values. 

Table 4.2 Descriptive Information on Standardized Statistics 

 INFIT OUTFIT 

 MEAN SD MIN. MAX. MEAN SD MIN. MAX. 

30 Items 

5,000 Test Takers 

Mean -0.077 0.796 -1.826 1.536 -0.021 0.927 -1.858 2.009 

SD 0.033 0.109 0.466 0.398 0.099 0.131 0.406 0.530 

Min. -0.177 0.447 -3.650 0.670 -0.350 0.587 -3.480 0.650 

Max. 0.018 1.279 -0.820 3.160 0.315 1.509 -0.960 4.670 

10,000 Test Takers 

Mean -0.102 0.838 -1.969 1.562 -0.019 0.949 -1.929 2.018 

SD 0.034 0.113 0.473 0.400 0.100 0.128 0.454 0.514 

Min. -0.239 0.521 -4.890 0.610 -0.327 0.571 -3.790 0.770 

Max. 0.002 1.210 -1.000 4.410 0.345 1.317 -0.810 4.580 

25,000 Test Takers 

Mean -0.177 0.880 -2.118 1.532 -0.066 0.970 -2.057 1.952 

SD 0.033 0.120 0.477 0.393 0.097 0.124 0.451 0.487 

Min. -0.293 0.490 -4.900 0.650 -0.377 0.649 -3.600 0.780 

Max. -0.087 1.315 -1.060 2.970 0.224 1.411 -0.990 3.650 

50,000 Test Takers 

Mean -0.196 0.936 -2.280 1.594 -0.077 1.014 -2.170 2.001 

SD 0.032 0.127 0.496 0.407 0.092 0.132 0.474 0.497 

Min. -0.289 0.592 -4.420 0.690 -0.414 0.565 -3.920 0.760 

Max. -0.088 1.487 -1.260 3.280 0.253 1.524 -1.060 3.840 

50 Items 

5,000 Test Takers 

Mean -0.064 0.809 -2.013 1.792 -0.034 0.913 -2.026 2.201 

SD 0.024 0.085 0.428 0.398 0.068 0.097 0.401 0.553 

Min. -0.145 0.555 -4.160 0.940 -0.254 0.590 -3.800 1.030 

Max. 0.022 1.095 -1.090 3.800 0.301 1.311 -0.950 4.750 

10,000 Test Takers 

Mean -0.093 0.835 -2.098 1.822 -0.055 0.927 -2.113 2.169 

SD 0.024 0.089 0.449 0.424 0.062 0.098 0.423 0.530 

Min. -0.180 0.589 -4.040 0.950 -0.235 0.614 -3.810 1.070 

Max. -0.017 1.186 -1.050 4.030 0.140 1.250 -1.220 5.300 

25,000 Test Takers 

Mean -0.120 0.836 -2.164 1.755 -0.063 0.941 -2.168 2.133 

SD 0.026 0.090 0.454 0.407 0.069 0.094 0.426 0.462 

Min. -0.201 0.575 -3.790 0.650 -0.276 0.628 -3.880 1.030 

Max. -0.026 1.164 -1.150 3.350 0.166 1.256 -1.190 3.790 

50,000 Test Takers 
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Mean -0.248 0.826 -2.316 1.531 -0.128 0.940 -2.281 2.007 

SD 0.026 0.090 0.493 0.377 0.070 0.098 0.446 0.465 

Min. -0.341 0.559 -4.730 0.720 -0.368 0.627 -4.310 0.790 

Max. -0.168 1.068 -1.270 3.120 0.106 1.246 -1.240 3.820 

70 Items 

5,000 Test Takers 

Mean -0.058 0.803 -2.108 1.923 -0.034 0.908 -2.133 2.343 

SD 0.025 0.073 0.428 0.423 0.056 0.086 0.388 0.584 

Min. -0.135 0.552 -4.140 0.950 -0.201 0.671 -3.900 1.200 

Max. 0.013 1.030 -1.060 4.300 0.163 1.248 -1.230 5.130 

10,000 Test Takers 

Mean -0.098 0.776 -2.096 1.797 -0.058 0.899 -2.134 2.236 

SD 0.021 0.070 0.412 0.401 0.056 0.080 0.378 0.510 

Min. -0.160 0.587 -3.940 0.860 -0.227 0.670 -3.720 1.190 

Max. -0.032 1.022 -1.250 3.850 0.120 1.142 -1.230 4.240 

25,000 Test Takers 

Mean -0.137 0.795 -2.200 1.781 -0.082 0.909 -2.233 2.180 

SD 0.020 0.075 0.433 0.398 0.057 0.081 0.387 0.471 

Min. -0.205 0.562 -3.930 0.990 -0.262 0.702 -3.660 1.220 

Max. -0.076 1.026 -1.320 3.760 0.113 1.170 -1.190 4.560 

50,000 Test Takers 

Mean -0.206 0.842 -2.376 1.796 -0.144 0.933 -2.387 2.122 

SD 0.024 0.077 0.437 0.409 0.053 0.080 0.424 0.441 

Min. -0.277 0.628 -4.530 0.940 -0.305 0.686 -4.340 1.180 

Max. -0.090 1.127 -1.290 3.580 0.015 1.226 -1.290 3.950 

 

 Again, the standard deviation of the unweighted ZSTD values were closer to the 

expected values than for the weighted ZSTD values; however, both indices were not 

greatly influenced by the sample size or test length.  For instance, the SD value of the 

average INFIT statistic was 0.809, 0.835, 0.836, and 0.826 for a 50-item test across the 

different sample sizes included here, and this value for the OUTFIT statistic was 0.913, 

0.927, 0.941, and 0.994 for the same testing situations.  For a group of 5,000 examinees, 

the standard deviation of the mean INFIT statistic were 0.796 (30 items), 0.809 (50 

items) and 0.803 (70 items) whereas the OUTFIT values were 0.927, 0.913, and 0.908 for 

the same testing scenarios.  Furthermore, for 30 items and 5,000 test takers, the mean and 

SD of the average OUTFIT ZSTD were −0.021 and 0.927.  Even with 70 items and 
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50,000 test takers, these values were only −0.144 and 0.933.  These showed that the 

Bond and Fox (2012) suggestion that all items would show misfit if sample sizes were 

large enough does not hold.   

 The patterns were also similar in the ranges of mean weighted and unweighted 

ZSTD values.  Overall, the OUTFIT statistic had a wider range than the INFIT statistic, 

but both indices did not appear to be influenced by sample size or test length.   

Type I Error Rates and Critical Values 

To investigate the Type I error rates associated with the INFIT and OUTFIT 

statistics, the percentage of values exceeding the recommended cut-off values were 

calculated.  Specifically, the percentage of MNSQ values exceeding ranges of 0.7 and 

1.3, 0.8 and 1.2, as well as 0.9 and 1.1 while the percentage of ZSTD values exceeding 

±2.0, ±3.0, and ±4.0 were calculated following suggestions from previous research 

(Smith et al.,1998).   

Results from the weighted MNSQ showed values greater than the commonly used 

rule-of-thumb for detecting measurement disturbances did not occur in any of the 12 

large-scale testing situations.  For the unweighted MNSQ values, when the sample size of 

test takers was 5,000, values greater than 1.1 occurred at a rate of approximately 1.00% 

in a 30-item test.  This number declined to around a third of the rate (0.34%) for a 50-

item test, and then further declined to 0.24% for a test of 70 items.  If the cut-off value of 

1.2 was used, values greater than 1.2 occurred around 0.01% for 5,000 test takers.  Both 

cut-off values are liberal given the customary error rate of 2.5% for a one-tail test with a 

symmetrical distribution.   
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Consistent with results from Smith et al. (1998), the number of INFIT MNSQ 

values greater than the traditionally used critical values were too small to determine the 

effect of test length.  Furthermore, the OUTFIT MNSQ statistic were also too small to 

determine the influence of test length, even though in some testing situations there might 

be a small effect.   

As results from the MNSQ values provided very low occurrences of Type I error 

rates, percentage of ZSTD statistic greater than the common cut-off values were also 

calculated.  Results for ZSTD values are presented in Table 4.3. 

Table 4.3 Percentage of Cases above Given Critical Values across 1,000 Replications 

  INFIT ZSTD OUTFIT ZSTD 

  5,000 10,000 25,000 50,000 5,000 10,000 25,000 50,000 

30 Items 

 > 4.0 0.000 0.003 0.000 0.000 0.017 0.007 0.000 0.000 

 > 3.0 0.010 0.010 0.000 0.013 0.143 0.137 0.120 0.123 

 > 2.0 0.417 0.470 0.410 0.550 1.920 1.910 1.643 1.910 

 < −2.0 1.183 1.723 2.467 3.460 1.287 1.510 2.250 2.770 

 < −3.0 0.056 0.077 0.163 0.290 0.033 0.100 0.117 0.177 

 < −4.0 0.000 0.003 0.010 0.010 0.000 0.000 0.000 0.000 

50 Items 

 > 4.0 0.000 0.004 0.000 0.000 0.018 0.010 0.000 0.000 

 > 3.0 0.012 0.024 0.012 0.006 0.184 0.136 0.094 0.062 

 > 2.0 0.586 0.702 0.568 0.210 1.722 1.568 1.568 1.246 

 < −2.0 1.136 1.448 1.712 2.442 1.192 1.536 1.780 2.294 

 < −3.0 0.048 0.074 0.086 0.194 0.042 0.070 0.098 0.138 

 < −4.0 0.002 0.002 0.000 0.012 0.000 0.000 0.000 0.008 

70 Items 

 > 4.0 0.001 0.000 0.000 0.000 0.027 0.009 0.001 0.000 

 > 3.0 0.023 0.016 0.013 0.011 0.201 0.116 0.089 0.063 

 > 2.0 0.621 0.426 0.389 0.437 1.689 1.410 1.283 1.140 

 < −2.0 1.146 1.057 1.400 2.107 1.256 1.224 1.650 2.234 

 < −3.0 0.051 0.030 0.077 0.123 0.037 0.031 0.073 0.133 

 < −4.0 0.001 0.000 0.000 0.003 0.000 0.000 0.000 0.004 

 

Unlike the MNSQ values, result on the t-transformation statistic suggested that 

the traditional ±2.0 appeared to be effective in serving as cut-off values, even in large-
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scale testing conditions.  In a test of 30 items, the error rates were close to or below the 

.05 level.  For instance, if 5,000 students took this test, 1.60% (i.e., 0.417% + 1.183%) of 

items may be mis-classified as non-fitting to the model if the INFIT ZSTD values were 

used whereas 3.42% of items may be mis-identified if OUTFIT ZSTD statistic were 

applied.  Furthermore, all the 12 testing conditions yielded slightly higher error rates if 

OUTFIT ZSTD were used instead of the INFIT ZSTD values; however, all values were 

still within the traditionally accepted range.  Under longer testing situations (e.g., 50 and 

70 items), again the OUTFIT standardized statistic had a slightly higher error rates than 

the INFIT standardized values, but all were still within the acceptable error level.  Even 

though these values are slightly lower than the traditional .05 error rate, using the values 

of ±1.0 may result in error rates that exceed the traditional cutoff, especially when the 

number of test takers is large.   

True Positive Hit Rates, Power Analysis and False Positive Rates 

The results from the above simulated data sets showed that almost all the items 

were correctly identified as good-fitting items.  However, the item fit indices used to 

investigate INFIT and OUTFIT were total item fit statistics.  For systematic errors as in 

DIF items, the total fit statistic may report low power and the between-fit item statistic 

should be used instead (Smith, 1994).  Table 30.4 in Winsteps® does not report results on 

mean square and standardized values of the INFIT statistic; and therefore, only the results 

of the OUTFIT indices were summarized.  

Hit rates and power analysis.  Results from across the replications indicated that 

both MNSQ and ZSTD indices could correctly identify items with moderate to large 
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magnitude of DIF (i.e., ETS level “C”, Zieky, 2003).  Here, MNSQ values slightly 

outperformed ZSTD values in true positive rates (i.e., power).   

Regardless of the number of test takers, test length, the percentage of DIF items, 

and the magnitude of DIF, majority of the unweighted between-fit statistics (97%, n=745 

from 768 estimates including 3 test lengths x 4 numbers of test takers x 4 different 

percentages of DIF items x 4 conditions of DIF magnitude x 4 cut-off values) 

successfully flagged the items with at least 99% accuracy.  Only three out of the 

remaining 23 individual estimates obtained an accuracy rate of less than 90%; and all 

lower hit rates were obtained in the 0.35 logits DIF conditions.  When the item difference 

was 0.35 logit more difficult for one group of 2,500 students than the other group, the hit 

rates dropped to lower than 85% (using ±3.0 as the cut-off value) for a test with 40% DIF 

items.  Specifically, these hit rates were 79%, 83%, and 84% for a test of 30, 50, and 70 

items respectively.  If ±2.0 was used instead as the cutoff, the hit rates were 93%, 96%, 

and 96%, only slightly lower than the 99% or 100% accuracy rates if their MNSQ 

counterpart values were used.  Furthermore, the lowest hit rate was 79% (i.e., a 30-item 

test with 5,000 test takers and 40% of 0.35 logits DIF item using ±3.0 as the cut-off 

value), which was still higher than the threshold of 70%.  It was also evident that as the 

magnitude of DIF increased, the power increased.  In other words, the percentage of 

correctly identifying misfitting items increased when the magnitude of DIF changed from 

0.35 to 0.65 logits (see Figure 4.1 for using the ±3.0 as the ZSTD cut-off).  However, the 

increase was not reliant on a larger amount of DIF as the true positive rates were high 

overall across all conditions tested, especially for the other testing situations and other 

value estimates.  The power curve was basically a flat straight line in other situations. 
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Figure 4.1. Power Curve for a 30-item Test with 5,000 Test Takers and 12 (40%) DIF 

Items  

 

False positive rates.  As correctly identifying misfitting items is crucial, correctly 

identifying items that fit the model is also important.  A false positive rate (i.e., Type I 

error rate) indicates the percentage of model-fitting items being mis-classified as non-

fitting.  While power was high for the study; however, results suggested that the number 

of false positive cases may also be high.  Tables 4.4-4.7 note the percentage of items that 

were incorrectly identified as ill-functioning, with magnitudes of DIF items ranging from 

0.35, 0.45, 0.55 to 0.65 logit units.      

In general, for the OUTFIT statistics reported by Winsteps®, the ZSTD values 

greatly outperformed the MNSQ values in mis-classifying items without DIF when the 

percentage of DIF items constituted less than 20% of the test, and the number of test 

takers were fewer than 50,000 students.  In a situation where 20% or more of DIF items 

were present and 50,000 students took the test, the ZSTD statistic still slightly 

outperformed their MNSQ counterparts, even though the error rates were still high.   
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 Overall, when considering the DIF magnitude situations, the false positive rates 

increased as the percentage of DIF items increased and the number of test takers 

increased, for both MNSQ and ZSTD values.  Nevertheless, MNSQ values experienced a 

smaller increase in comparison to their ZSTD counterparts since the MNSQ indices were 

already high.   

Also, results suggested that the number of test takers exerted a slightly greater 

impact than the proportion of DIF items.  For instance, when DIF items differed by 0.35 

logits in a 30-item test, the false positive rates of ZSTD (±2.0) went from 2.87%, 5.00%, 

15.31% to 69.36%, with a latter value more than doubled the previous condition as the 

percentage of DIF items increased.  For the same index, the rates increased to 9.02% 

(with 4% DIF items), 34.94% (with 10% DIF items), 88.38% (with 20% DIF items) and 

99.99% (with 40% DIF items) when the number of test-taking students rose from 5,000 

to 50,000.  Similar patterns were observed in 50-item and 70-item tests as well as 

different magnitude of DIF items.  This was somewhat different from the previous results 

(from Tables 4.1-4.2) in which the number of test takers had a small influence on ZSTD 

indices when the items were all well-fitting to the model.   

 Across the different DIF magnitude situations, the changes of MNSQ values 

appeared to be smaller than the changes of ZSTD values, especially when the percentage 

of DIF items was low and the number of test takers were at the lower end of the 

conditions.  For example, a 50-item test with 5 (10%) DIF items, yielded false positive 

rates were 5.22% (± 2.0) and 0.46% (± 3.0), 7.09% (± 2.0) and 0.69% (± 3.0), 9.54% (± 

2.0) and 1.07% (± 3.0), as well as 12.60% (± 2.0) and 1.64% (± 3.0) for each of the 

different magnitude testing conditions increased from 0.35 to 0.65 logits.  In the 
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meantime, the MNSQ values remained stable for these conditions, ranging between 

85.25% to 86.91% when (0.7, 1.3) were used as the cut-off values and between 90.41% 

to 91.44% when the cut-off values of (0.8, 1.2) were applied.  Again, the changes of 

ZSTD values were more apparent along with the increase in DIF item presence and the 

number of test takers.  Results suggested that the increase of error greatly impacted the 

performance of fit indices.  It appeared that the additional amount of error introduced by 

more test takers and more items were distributed to non-DIF items.  This was more 

evident in situations of 40% DIF items.  When a large proportion of DIF items exhibited 

item DIF, error appeared to be more evenly distributed to all items in all test length and 

test taker situations.  This resulted in very high false positive rates, even for ZSTD 

indices using ±2.0 or ±3.0 as the cut-off values. 

 The following graphs (Figures 4.2-4.4) showcase the false positive rates (using 

±2.0 for ZSTD values) for different magnitude of DIF as the percentage of DIF items 

included on a test changed.  When the proportion was small and the number of test takers 

was no more than 10,000, the error rates were low across moderate and large DIF 

conditions.  When the proportion of DIF items spiked to 40%, however, the error rates 

were high (at least 60%) regardless of the sample size, test length, and magnitude of DIF.  

For a test including 20% of items with DIF, when the number of test takers were at least 

10,000, the false positive rates accelerated to more than 80% and leveled off to about 

100%.    
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Figure 4.2. False Positive Rates by DIF Magnitude for a 30-item Test 
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Figure 4.3. False Positive Rates by DIF Magnitude for a 50-item Test  
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Figure 4.4. False Positive Rates by DIF Magnitude for a 70-item Test  
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±3.0 0.35 1.07 4.10 13.22 

6  

MSNQ 0.7, 1.3 87.17 90.30 96.65 99.14 

 0.8, 1.2 91.42 93.50 97.74 99.43 

ZSTD ±2.0 15.31 29.91 65.53 88.38 

 ±3.0 2.29 7.31 32.27 68.50 

12  

MSNQ 
0.7, 1.3 97.03 99.37 99.96 100.00 

0.8, 1.2 98.09 99.62 99.97 100.00 

ZSTD 
±2.0 69.36 90.99 99.39 99.99 

±3.0 36.13 72.66 96.65 99.84 

50 Items      

2  

MSNQ 
0.7, 1.3 85.24 85.25 85.47 85.91 

0.8, 1.2 90.24 90.23 90.41 90.61 

ZSTD 
±2.0 2.89 3.38 5.33 8.14 

±3.0 0.20 0.19 0.43 0.87 

5  

MSNQ 
0.7, 1.3 85.25 85.72 87.90 91.94 

0.8, 1.2 90.41 90.55 91.98 94.66 

ZSTD 
±2.0 5.22 8.52 19.46 38.28 

±3.0 0.46 0.86 3.39 10.45 

10  

MSNQ 
0.7, 1.3 88.89 92.38 98.43 99.91 

0.8, 1.2 92.69 94.90 98.98 99.92 

ZSTD 
±2.0 20.66 40.35 80.06 97.21 

±3.0 3.85 11.56 47.74 85.58 

20  

MSNQ 
0.7, 1.3 97.36 99.74 100.00 100.00 

0.8, 1.2 98.26 99.83 100.00 100.00 

ZSTD 
±2.0 70.04 94.10 99.91 100.00 

±3.0 34.44 75.11 99.15 100.00 

70 Items      

3  

MSNQ 
0.7, 1.3 85.35 85.22 85.84 86.85 

0.8, 1.2 90.26 90.45 90.30 91.31 

ZSTD 
±2.0 3.37 4.42 8.08 14.86 

±3.0 0.22 0.33 0.81 2.33 

7  

MSNQ 
0.7, 1.3 85.58 86.87 91.09 95.63 

0.8, 1.2 90.52 91.27 94.16 97.30 

ZSTD 
±2.0 7.74 13.64 33.12 59.20 

±3.0 0.79 2.00 8.55 26.26 

14  

MSNQ 
0.7, 1.3 88.55 93.06 98.50 99.87 

0.8, 1.2 92.34 95.43 99.07 99.91 

ZSTD 
±2.0 21.72 42.20 81.36 97.13 

±3.0 3.99 12.63 50.30 86.17 

28  

MSNQ 
0.7, 1.3 97.52 99.74 100.00 100.00 

0.8, 1.2 98.35 99.82 100.00 100.00 

ZSTD 
±2.0 72.69 94.36 99.94 100.00 

±3.0 38.42 77.15 99.03 100.00 

Note: Shaded cells show the minimum/maximum values. 
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 A closer look at the results of the moderate DIF (i.e., 0.35 logits) showed that the 

percentage of false positive rates in MNSQ values ranged from 84.94% to 100.00% with 

the traditional cutoffs 0.7 and 1.3, and from 90.05% to 100.00% using cut-off values of 

0.8 and 1.2.  In contrast, ZSTD (±2.0) performed well with a false positive rate 

approximating the Type I error rate of .05 when a small number of DIF items were 

present (e.g., 4% of the test) and sample sizes of examinees were smaller than 25,000.  

For tests with more DIF items and test takers, ZSTD (±3.0) functioned well.  Specifically, 

when the proportion of DIF items reached 10%, using ZSTD (±3.0), the majority of the 

testing conditions still achieved a .05 Type I error rate. 

 Error rates exceeded .05 when the number of test takers rose to 50,000.  One 

exception was the Type I error rate with a 70-item test for 25,000 test takers.  It was 

8.55% (or .0855), slightly above the commonly used .05.  The value of ±3.0 still 

functioned well when the proportion of DIF items reached 20% with 5,000 test takers.  

As the number of DIF items increased to 40%, or the number of test takers increased, 

even this cut-off value resulted in a large number of items being wrongly identified as ill-

fitting. 

As seen from the graphical display below (Figures 4.5-4.7), when ±2.0 was used 

to identify item misfit for the OUTFIT ZSTD statistic, the false positive rates increased 

rapidly as the number of items with moderate DIF increased.  The increase was notable 

when the number of DIF items reached higher levels, including 20% and 40% of the test.  

Basically, the item fit indices flagged majority of the model-fitting items as misfitting 

(i.e., at least about 70%) regardless of the presence or absence of DIF.  For a group of test 
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takers of 5,000 and 10,000, the change in false positive rates appeared more as a straight 

line for all three different test lengths.  This was somewhat expected.  

 

Figure 4.5. False Positive Rates for a 30-item Test with a Difference of 0.35 Logits 

 

 

Figure 4.6. False Positive Rates for a 50-item Test with a Difference of 0.35 Logits  
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Figure 4.7. False Positive Rates for a 70-item Test with a Difference of 0.35 Logits  

 

DIF of 0.45 logits.  False positive rate results for a DIF difference of 0.45 logits 

were presented as the following. 

Table 4.5 Percentage of False Positive Cases across 1,000 Replications with a Difference 

of 0.45 Logits  

Number of 

DIF Items 

Fit 

Index 

Cut-off 

Values 

Number of Test Takers 

5,000 10,000 25,000 50,000 

30 Items      

1  

MSNQ 
0.7, 1.3 85.26 85.10 85.95 86.77 

0.8, 1.2 90.19 90.27 90.89 91.16 

ZSTD 
±2.0 3.23 4.37 7.81 13.43 

±3.0 0.21 0.38 0.75 2.20 

3  

MSNQ 
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ZSTD 
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50 Items      

2  

MSNQ 
0.7, 1.3 85.15 85.11 85.58 86.67 

0.8, 1.2 90.22 90.18 90.34 91.50 

ZSTD 
±2.0 3.24 4.07 7.24 12.28 

±3.0 0.24 0.27 0.63 1.65 

5  

MSNQ 
0.7, 1.3 85.49 86.94 90.91 95.75 

0.8, 1.2 90.44 91.47 93.85 97.13 

ZSTD 
±2.0 7.09 12.85 31.32 58.24 

±3.0 0.69 1.68 7.52 23.51 

10  

MSNQ 
0.7, 1.3 91.08 96.16 99.73 100.00 

0.8, 1.2 94.16 97.49 99.80 100.00 

ZSTD 
±2.0 33.34 61.96 94.23 99.75 

±3.0 8.36 26.76 76.46 97.51 

20  

MSNQ 
0.7, 1.3 99.27 99.98 100.00 100.00 

0.8, 1.2 99.53 99.99 100.00 100.00 

ZSTD 
±2.0 88.86 99.17 100.00 100.00 

±3.0 63.08 94.16 99.95 100.00 

70 Items      

3  

MSNQ 
0.7, 1.3 85.39 85.57 86.31 88.97 

0.8, 1.2 90.39 90.49 91.13 92.68 

ZSTD 
±2.0 4.07 5.99 12.40 23.66 

±3.0 0.30 0.54 1.64 4.99 

7  

MSNQ 
0.7, 1.3 86.45 88.58 94.37 98.02 

0.8, 1.2 91.00 92.55 96.35 98.78 

ZSTD 
±2.0 11.72 22.17 51.90 79.03 

±3.0 1.47 4.34 19.87 50.99 

14  

MSNQ 
0.7, 1.3 91.67 96.65 99.74 99.99 

0.8, 1.2 94.45 97.72 99.83 100.00 

ZSTD 
±2.0 35.44 63.79 94.51 99.71 

±3.0 9.33 28.80 78.27 97.56 

28  

MSNQ 
0.7, 1.3 99.36 99.97 100.00 100.00 

0.8, 1.2 99.59 99.98 100.00 100.00 

ZSTD 
±2.0 90.22 99.24 100.00 100.00 

±3.0 67.08 94.59 99.99 100.00 

Note: Shaded cells show the minimum/maximum values. 

 

When the moderate item DIF increased to 0.45 logits, results indicated that the 

percentage of false positive rates in MNSQ values ranged from 85.10% to 100.00% for 

(0.7, 1.3) and from 90.18% to 100.00% for (0.8, 1.2).  In contrast, ZSTD (±2.0) again 

performed well with a false positive rate close to the Type I error rate of .05 when a small 
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number of DIF items were present (e.g., 4% of the whole test) and sample sizes of 

examinees were smaller than 25,000.  For tests with more DIF items and test takers, 

ZSTD (±3.0) functioned well.  Specifically, when the proportion of DIF items reached 

10%, majority of the testing conditions still achieved a .05 Type I error rate unless the 

number of test takers reached 25,000.     

The following graphs (Figures 4.8-4.10) suggested that again the false positive 

rates increased substantially as the number of DIF items increased when ±2.0 was used to 

identify item misfit for the OUTFIT ZSTD statistic.  This jump was apparent when the 

number of DIF items reached 20% and the false positive rate started to level off for 

conditions in which DIF items constituted 40% of the test.  Basically, the item fit indices 

indicated at least 85% the well-performing test items as misfitting.  For a group of 5,000 

test takers, the false positive rates appeared more as a straight line for all three test length 

conditions. 

 

Figure 4.8. False Positive Rates for a 30-item Test with a Difference of 0.45 Logits  
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Figure 4.9. False Positive Rates for a 50-item Test with a Difference of 0.45 Logits  

 

 

Figure 4.10. False Positive Rates for a 70-item Test with a Difference of 0.45 Logits  
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Table 4.6 Percentage of False Positive Cases across 1,000 Replications with a Difference 

of 0.55 Logits 

Number of 

DIF Items 

Fit 

Index 

Cut-off 

Values 

Number of Test Takers 

5,000 10,000 25,000 50,000 

30 Items      

1  

MSNQ 
0.7, 1.3 85.12 85.23 85.89 87.86 

0.8, 1.2 90.24 90.12 90.77 91.99 

ZSTD 
±2.0 3.63 5.08 10.21 19.27 

±3.0 0.26 0.43 1.30 3.86 

3  

MSNQ 
0.7, 1.3 85.77 87.69 91.49 93.73 

0.8, 1.2 90.60 91.76 94.35 95.72 

ZSTD 
±2.0 8.61 16.51 37.12 54.47 

±3.0 0.99 3.52 15.28 35.06 

6  

MSNQ 0.7, 1.3 91.40 96.05 99.41 99.96 

 0.8, 1.2 94.22 97.41 99.65 99.98 

ZSTD ±2.0 35.20 62.98 91.73 98.87 

 ±3.0 9.15 29.50 74.92 93.99 

12  

MSNQ 
0.7, 1.3 99.42 99.98 100.00 100.00 

0.8, 1.2 99.59 99.99 100.00 100.00 

ZSTD 
±2.0 93.47 99.20 100.00 100.00 

±3.0 79.69 95.63 99.91 100.00 

50 Items      

2  

MSNQ 
0.7, 1.3 85.19 85.06 85.63 87.24 

0.8, 1.2 90.24 90.16 90.78 91.38 

ZSTD 
±2.0 3.58 5.11 9.61 17.42 

±3.0 0.29 0.42 1.09 2.82 

5  

MSNQ 
0.7, 1.3 86.29 87.80 93.60 97.87 

0.8, 1.2 90.99 91.95 95.80 98.55 

ZSTD 
±2.0 9.54 18.38 45.11 74.88 

±3.0 1.07 2.98 14.20 41.15 

10  

MSNQ 
0.7, 1.3 94.20 98.26 99.95 100.00 

0.8, 1.2 96.09 98.85 99.99 100.00 

ZSTD 
±2.0 48.03 79.14 98.75 99.99 

±3.0 16.46 46.38 91.73 99.71 

20  

MSNQ 
0.7, 1.3 99.88 100.00 100.00 100.00 

0.8, 1.2 99.94 100.00 100.00 100.00 

ZSTD 
±2.0 96.64 99.92 100.00 100.00 

±3.0 83.82 99.00 100.00 100.00 

70 Items      

3  

MSNQ 
0.7, 1.3 85.43 85.75 87.71 91.50 

0.8, 1.2 90.37 90.53 91.60 94.37 

ZSTD 
±2.0 4.98 8.01 17.86 34.70 

±3.0 0.40 0.83 2.96 9.61 

7  MSNQ 
0.7, 1.3 87.77 91.06 97.24 99.13 

0.8, 1.2 91.83 94.06 98.21 99.42 
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ZSTD 
±2.0 17.10 33.07 69.40 90.18 

±3.0 2.76 8.65 36.32 71.60 

14  

MSNQ 
0.7, 1.3 94.53 98.55 99.96 100.00 

0.8, 1.2 96.32 99.02 99.99 100.00 

ZSTD 
±2.0 51.00 80.80 98.78 99.99 

±3.0 18.33 49.66 92.68 99.74 

28  

MSNQ 
0.7, 1.3 99.91 100.00 100.00 100.00 

0.8, 1.2 99.94 100.00 100.00 100.00 

ZSTD 
±2.0 96.97 99.91 100.00 100.00 

±3.0 86.23 99.09 100.00 100.00 

Note: Shaded cells show the minimum/maximum values. 

 

As the magnitude of DIF increased to 0.55 logits, the percentage of false positive 

rates in MNSQ values did not vary widely.  Values ranged from 85.06% to 100.00% with 

the suggested cut-off values (0.7, 1.3) and from 90.12% to 100.00% for (0.8, 1.2).  Again, 

ZSTD (±2.0) functioned well with a false positive rate close to the Type I error rate of .05 

with 4% of the items exhibiting DIF and fewer than 25,000 taking the test.  One 

exception occurred in a 70-item test.  The Type I error rate reached 8.01% (or .0801) for 

10,000 test takers.  For tests with more DIF items and test takers, ZSTD (±3.0) 

functioned satisfactorily.  Specifically, when the proportion of DIF items reached 10%, 

majority of the testing conditions still achieved a .05 Type I error rate unless the number 

of test takers reached 25,000.  

As seen from the graphs below (Figures 4.11-4.13), when ±2.0 was used to 

identify item misfit for the OUTFIT ZSTD statistic, the increase in false positive rates 

was very similar to the graphs for the situation involving a difference of 0.45 logits for 

DIF.  Again, the item fit indices flagged vast majority of the model-fitting items as 

misfitting (i.e., at least about 90%) when the proportion of 0.55 logits DIF items reached 

20% or more.   
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Figure 4.11. False Positive Rates for a 30-item Test with a Difference of 0.55 Logits  

 

 

Figure 4.12. False Positive Rates for a 50-item Test with a Difference of 0.55 Logits  
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Figure 4.13. False Positive Rates for a 70-item Test with a Difference of 0.55 Logits  
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6  

MSNQ 0.7, 1.3 93.60 97.65 99.78 99.99 
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12  
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ZSTD 
±2.0 96.88 99.66 100.00 100.00 

±3.0 88.97 98.13 100.00 100.00 
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50 Items      

2  

MSNQ 
0.7, 1.3 85.24 85.37 86.37 88.85 

0.8, 1.2 90.27 90.31 90.92 92.53 

ZSTD 
±2.0 4.03 6.26 12.48 23.59 

±3.0 0.34 0.60 1.65 4.81 

5  

MSNQ 
0.7, 1.3 86.91 89.55 95.60 99.06 

0.8, 1.2 91.44 92.97 97.12 99.44 

ZSTD 
±2.0 12.60 25.18 58.27 86.07 

±3.0 1.64 5.24 24.00 59.56 

10  

MSNQ 
0.7, 1.3 96.19 99.45 99.99 100.00 

0.8, 1.2 97.52 99.65 99.99 100.00 

ZSTD 
±2.0 62.64 89.84 99.69 100.00 

±3.0 27.56 65.59 97.79 99.99 

20  

MSNQ 
0.7, 1.3 99.98 100.00 100.00 100.00 

0.8, 1.2 99.99 100.00 100.00 100.00 

ZSTD 
±2.0 99.15 99.99 100.00 100.00 

±3.0 94.20 99.87 100.00 100.00 

70 Items      

3  

MSNQ 
0.7, 1.3 85.32 86.20 89.30 93.52 

0.8, 1.2 90.32 90.85 92.83 95.79 

ZSTD 
±2.0 6.14 10.42 24.63 46.54 

±3.0 0.522 1.34 5.20 16.51 

7  

MSNQ 
0.7, 1.3 89.32 93.47 98.39 99.67 

0.8, 1.2 93.10 95.67 98.91 99.74 

ZSTD 
±2.0 23.57 45.37 81.66 95.56 

±3.0 4.81 15.24 54.52 84.96 

14  

MSNQ 
0.7, 1.3 96.73 99.51 99.99 100.00 

0.8, 1.2 97.81 99.69 100.00 100.00 

ZSTD 
±2.0 65.56 90.84 99.78 100.00 

±3.0 30.47 68.50 97.93 99.98 

28  

MSNQ 
0.7, 1.3 99.98 100.00 100.00 100.00 

0.8, 1.2 99.99 100.00 100.00 100.00 

ZSTD 
±2.0 99.30 99.99 100.00 100.00 

±3.0 95.08 99.90 100.00 100.00 

Note: Shaded cells show the minimum/maximum values. 

 

With an item difference of 0.65 logits, the percentage of false positive rates in 

MNSQ values ranged from 85.03% to 100.00% with the traditional cutoffs 0.7 and 1.3, 

and from 90.14% to 100.00% using cut-off values of 0.8 and 1.2.  In contrast, ZSTD 

performed satisfactorily, exhibiting a false positive rate close to the Type I error rate of 
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.05 when a small number of DIF items were present (e.g., 4% and 10% of the whole test) 

and sample sizes of examinees were smaller than 25,000.   

Similarly, the false positive rates skyrocketed as the number of DIF items 

increased.  The percentages of falsely identified non-DIF items jumped to over 90% 

when the DIF items increased to 20% and 40% of the test items under all test sizes when 

the MNSQ values were used.  This trend began when the difference in DIF was 0.55 

logits and was further evident when the DIF difference increased to 0.65 logits.  For 

ZSTD values, when the proportion of DIF items only constituted 4% of the test, ±3.0 

could still be used to identify item misfit within the nominal Type I error rate range for 

the conditions tested here, except for the largest number of test taker 50,000 and the 

longest test of 70 items (i.e., the false positive rate was 16.51% for this situation).   

 If ±2.0 was used instead to identify item misfit, only a small number of DIF items 

(i.e., 4% of the test) and test takers (i.e., 5,000) might be considered for adequate 

accuracy.  Again, as seen from the graphical display below (Figures 4.14-4.16), the false 

positive rates jumped rapidly as the number of items with large DIF increased.  This 

increase almost reached the maximum when the proportion of DIF items reached 20% of 

a 30- or 50-item test and 10% for a 70-item test.  Basically, the item fit indices flagged all 

items as misfitting.  
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Figure 4.14. False Positive Rates for a 30-item Test with a Difference of 0.65 Logits 

 

 

Figure 4.15. False Positive Rates for a 50-item Test with a Difference of 0.65 Logits 
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Figure 4.16. False Positive Rates for a 70-item Test with a Difference of 0.65 Logits 

  

In summary, if MNSQ values were used to identify item misfit, the false positive 

rates were high (i.e., at least 80%) in all testing situations, regardless what cut-off values 

(i.e., 0.7 and 1.3, 0.8 and 1.2) were adopted.  Major contributors to this result may be the 

large amount of DIF presence and a large number of test takers.  Even with a small 

amount of measurement disturbance, more items may be wrongfully flagged as 

misfitting.  In contrast, if ZSTD values were used, satisfactory results were obtained in 

some testing situations.  Generally, the cut-off values of ±2.0 performed well when the 

proportion of DIF items constituted no more than 4% of a test with no more than 10,000 

test takers for a test of medium length (e.g., 50 items) with moderate item DIF (e.g., 0.35 

and 0.45 logits).  If the percentage of these biased items reached 10%, the cut-off values 

of ±3.0 were recommended.  For items with large bias (e.g., 0.55 and 0.65 logits), all 

these cut-off values were still effective as long as the number of test takers did not go 

beyond 5,000.
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CHAPTER 5 

DISCUSSION 

 The purpose of this study was to investigate the accuracy of the mean square 

(MNSQ) values and the standardized (ZSTD) values of the weighted INFIT and the 

unweighted OUTFIT total item fit statistics to detect ill-fitting items within the Rasch 

dichotomous framework.  This issue is important to help psychometricians and test 

developers in selecting and using high quality objective (e.g., multiple-choice) items.  As 

many educational state-wide testing situations use the Rasch model and may be high-

stakes for pupils, this investigation is needed.  

 A simulation study was conducted where conditions of sample size, test length, 

magnitude and proportion of DIF items were manipulated.  Factors were chosen to reflect 

possible influence from these conditions suggested by previous studies (Awuor, 2008; 

Miller & Linn, 1988; Miller & Oshima, 1992; Smith et al., 1998) as well as state testing 

situations (e.g., SC READY, SCPASS, EOCEP). 

 Specifically, the commonly used Rasch-based fit indices (i.e., the INFIT and the 

OUTFIT statistics) expressed in MNSQ and ZSTD values were investigated to determine 

the item misfit.  Traditionally, 0.7 and 1.3 are recommended as the cut-off values for 

MNSQ while ±2.0 for ZSTD values (Wright & Linacre, 1994).  In high-stakes tests, more 

conservative values of 0.8 and 1.2 (Wright & Linacre, 1994) as well as ±3.0 (Iramaneerat 

et al., 2007) have been suggested. 
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 The study also examined the Type I error rates and the suggested rule-of-thumb 

critical values under various sample size (e.g., 5,000, 10,000, 25,000, and 50,000) and 

test length (e.g., 30, 50, and 70 multiple-choice items) conditions in large-scale testing 

situations.  Furthermore, the study evaluated how the obtained values performed to detect 

simulated measurement disturbances exhibiting through two-group uniform DIF items 

with a balanced design through between-item fit statistics.  The percentage of items that 

exhibited moderate to large DIF (category “C” per Educational Testing Service’s 

guidelines) ranged from 4%, 10%, 20% and 40% of the test; and items with various 

degrees of DIF presence ranged from 0.35, 0.45, 0.55 to 0.65 logit units.     

Study Findings 

Results from the current study affirmed findings from some previous research yet 

noted unexpected conclusions about the false positive rates (i.e., Type I error rate) of the 

Rasch-based fit indices.   

Research Questions 1 and 2.  Results of the simulation were consistent with 

those provided previous studies (Smith et al., 1998; Wang & Chen, 2005; Wolfe, 2013) 

as ZSTD values were less influenced by the number of test takers and test items, and that 

they were more effective than their MNSQ counterparts in detecting item misfit for both 

INFIT and OUTFIT statistics when items fit the Rasch dichotomous model.  The MNSQ 

values for all INFIT statistic and majority of OUTFIT statistic fell within the 0.9 to 1.1 

range, suggesting that the simulation was on target.  The optimistic values may be 

contributed to the large sample sizes studied; as the chi-square values increased with the 

sample size thus the majority, if not all, items would exhibit acceptance fit to the Rasch 

model.  A large chi-square value may result in under-identification of misfitting items if 
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the majority or all items ‘appear to’ fit well when the sample size is large enough.  

Furthermore, Winsteps® uses a sampling replacement procedure to bootstrap data sets, 

which might not provide the necessary stochastic structure and thus limit the performance 

of fit indices.           

 For ZSTD values, the commonly used values of ±2.0 achieved an error rate lower 

than .05 for INFIT and OUTFIT total item fit statistics, even though the OUTFIT index 

had a slightly higher error rate.  This means the probability of falsely mis-identifying an 

item as not fitting the Rasch model was no more than 5% for each of the testing 

conditions if values of ±2.0 were used as a quality control mechanism.  Therefore, both 

the INFIT and OUTFIT could be recommended for use when the items fit the model.  

Furthermore, ZSTD values of ±2.0 were suggested over other values like ± 1.0 because 

other values would result in higher error rates beyond the acceptable level.  

In summary, ZSTD values of the INFIT and OUTFIT statistics may work 

effectively and efficiently to aid test developers in multiple-choice item construction for 

large-scale assessment programs.  Test users may benefit from improvement of high-

quality items that would provide accurate information on their test performance through 

valid score interpretation. 

Research Question 3.  The broader issue is to identify how these indices 

performed when errors were present.  Since the systematic error (i.e., DIF) was simulated 

due to programming constraints, the between-item fit statistics were used instead of the 

total item fit statistics as in the previous two research questions.  When the magnitude of 

DIF was moderate to large (e.g., 0.35 to 0.65 logits), the MNSQ and ZSTD values for the 

OUTFIT item between-fit statistics performed extremely well when detecting misfitting 
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items, regardless of sample size, test length, proportion of DIF items present in the test, 

and the magnitude of DIF.  All these indices (i.e., 0.7 and 1.3 as well as 0.8 and 1.2 for 

MNSQ OUTFIT;  ±2.0  and ±3.0 for ZSTD OUTFIT) under all pre-determined testing 

conditions achieved a hit rate (i.e., true positive rate) of 79% or more, higher than the 

70% threshold for acceptable power suggested by González-Romá et al. (2006), 

indicating a great level of accuracy in result interpretation so as to improve test validity.    

Results suggested that the two indices had high power (i.e., ability to correctly 

identify misfitting cases, true positive rates) in detecting moderate to large uniform DIF 

items in large-scale testing situations.  These indices may be recommended to identify 

item misfit if only power needs to be taken into consideration.  The high power observed 

here, however, might be due to the influence of sample size on chi-square values, 

especially when the sample sizes were very large.  In statistics, large sample sizes inflate 

observed power, by making even small deviations observable.  Overall, the MNSQ 

values slightly outperformed their ZSTD counterparts in hit rates, and the results were not 

significantly different when either value was used.  Identification of item misfit using 

either value would reach at least 90% agreement most of the time (i.e., 99.6% of all 

estimates).  It was recommended that both values may be used. 

While high power was evident under these situations, however, it was extremely 

alarming that the number of well-functioning items being falsely identified as misfitting 

(i.e., false positive, Type I error) was staggeringly high when MNSQ values were used.  

Thus, the majority, if not all, test items would be identified as misfitting when the 

commonly used values (i.e., 0.7 and 1.3; 0.8 and 1.2) were adopted.  This would result in 

unnecessary revision even discard of a majority of well-performing items, leaving test 
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developers with a much smaller item pool for test development.  As this item pool is 

typically used to create equivalent forms, test developers may encounter the problem of 

including an inadequate number of unique items (i.e., items that are used in one test form 

but not the other), thus defeating the purpose of constructing equivalent forms.   

If ZSTD values were used, the index could satisfactorily classify DIF items with 

great accuracy unless the proportion of DIF items was large and/or the number of test 

takers was very large.  Specifically, in these large-scale testing situations, the cut-off 

values ±2.0 for the ZSTD appeared to be effective in detecting item misfit when only 

around 4% of items exhibited systematic moderate DIF (e.g., 0.35 and 0.45 logits) with 

no more than 10,000 test takers for a test of 50 items or fewer.  Furthermore, ±3.0 was 

suggested for using to examine item misfit when the proportion of DIF items reached 

10% of the test.  For items with large DIF (e.g., 0.55 and 0.65 logits), values of ±2.0 and 

±3.0 still worked effectively in the above scenarios when the number of test takers 

reduced to around 5,000.  For a longer test of 70 items, these values were effective with 

5,000 test taking students and moderate DIF items.  When a large percentage of DIF 

items (i.e., 40%) was present, either statistic performed well and would identify majority 

or all items as ill-fitting.  These results were somewhat different from the belief that most 

items will likely be rejected if ZSTD values are used due to the significance of small 

amount of misfit in large sample situations (Bond & Fox, 2012).  Findings from the 

simulation study suggested that ±2.0 or ±3.0 as a cutoff for the ZSTD may be used in 

large-scale testing situations unless the proportion of biased items reached 40% of the 

test. 
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The use of MNSQ values to detect DIF is more complicated.  Basically, the 

between-item fit indices flagged all items as misfitting in all the large-scale testing 

situations under study.  The hit rates and false negative rates increased with the 

proportion of flawed items, the number of test-taking individuals, and the magnitude of 

DIF.  These three variables brought more error in comparison to test length conditions.  

Over-identification of item misfit would result in unneeded revision or even exclusion of 

majority of the items.  

Overall, the ZSTD values outperformed the MNSQ values in false positive rates 

(i.e., Type I error rates).  When the proportion of DIF items were small, and/or the 

number of test-taking individuals did not reach 50,000, the outperformance could be 

substantial.  This finding extended prior research and provided psychometricians and test 

developers with information under large-scale testing situations in medium to long tests.   

With a large percentage of DIF item presence and/or a large number of test takers, 

even the ZSTD values (both ±2.0 and ±3.0) resulted in high false positive rates.  

Therefore, such situations, neither ZSTD nor MNSQ indices could be recommended for 

use to detect item misfit.  Instead, it is recommended that before making a decision about 

which indices and what values to use for item identification, we need to consider the 

number of items possibly exhibiting DIF and examine the number of test takers needed.  

In general, ±2.0 may be recommended to use when the proportion of DIF items are 

around 4% with 5,000 test takers.  For even larger sample size settings, ±3.0 may be 

suggested.  However, caution is recommended because high false positive rates were still 

observed under in certain situations (e.g., 40% flawed items with large DIF).  In such 

situations, alternative measures may be conducted.  For example, sampling procedures 
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may be considered to obtain reliable item information from a representative group of test 

takers.  Alternatively, pilot studies on items, especially ill-fitting items may be conducted 

prior to test administration.   

The DIF analysis conducted through Winsteps® yielded some unexpected results, 

with high false positive rates identifying item misfit for OUTFIT ZSTD values in 

situations of a large amount of measurement error.  However, this may be attributed to 

the procedure used by the Winsteps® software program to examine DIF.  In place of the 

single calibration method that uses the subpopulation residuals to detect item DIF (Smith, 

R., 2004a), results from Winsteps® between-item fit statistic use a logistic regression 

analysis.  Developed by Swaminathan and Rogers (1990), the logistic regression 

procedure tests if the logistic regression curves for two groups are the same across ability 

levels.  This framework for conducting a DIF analysis uses a statistical model which is 

based on the probability of correct response to an item by group membership and a 

criterion/conditioning variable (e.g., usually the scale or subscale total score).  The model 

uses the item response (0 or 1) as the dependent variable, with three independent 

variables consisting of the group membership (i.e., reference or focal group), the total 

score for each respondent, and an interaction between group and total score.  Thus, the 

logistic regression method determines DIF conditioning on the relationship between the 

item response and the total score, testing the effects of group for uniform DIF or the 

interaction for non-uniform DIF (Zumbo, 1999).   

The logistic regression method was created for use with IRT-based methods, and 

in particular, the 3PL model.  Thus, use of this underlying model is inconsistent with the 

Rasch measurement framework because the probability of a correct response is not 
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dependent upon solely the test taker’s ability estimate and an item’s difficulty estimate.  

More importantly, use of the logistic regression method to detect DIF is extremely 

sensitive when sample size is large, thus providing results which are more in line with the 

use of the total fit statistic (of Winsteps®) and not what is expected if the results were 

computed using a between-fit statistic (R. Smith, personal communication, July 13, 

2020).  While findings were unexpected, this information is useful as Winsteps® users 

should exercise caution if using the between-fit statistic calculated by the program to 

examine item DIF. 

Implications for Practice 

A major takeaway message from this study indicated the great impact of 

measurement disturbances on item performance.  When a large amount of error was 

present, none of the between-item fit indices correctly identified items that were well-

fitting.  Results showed that many items with error greatly impacted the ability to 

correctly classify model-fitting items.  This suggested that it is imperative for a test to 

include high quality items, thus making the accurate identification of item misfit more 

important.  In large-scale testing situations, especially when the stakes are high for 

making crucial decisions on promotion, graduation, or certification, assessments need to 

use high quality items with solid psychometric properties to safeguard the accuracy of 

inferences and conclusions drawn from assessment results.   

This simulation study showed meaningful implications on item quality to 

assessment as well as the impact on test validity.  Researchers have dedicated long-term 

efforts in constructing multiple-choice items during the test development process.  

Proposed and validated by Haladyna and Downing (1989a; 1989b), a detailed description 
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of 43 principles was provided for general item writing in procedures and content, for 

stem construction, and for option development that included the correct answer and 

distractors.  It was recommended that these specific research-based principles be 

followed to guide the construction of effective multiple-choice items (Downing & 

Haladyna, 1997; Haladyna, 2004).   

A study on the consequences of using flawed multiple-choice items in a medical 

achievement exam by Downing (2005) found that these items were more difficult than 

their comparable standard questions and resulted in lower passing rates.  Another study 

on continuing medical education (Stagnaro-Green & Downing, 2006) concluded that the 

items that did not follow the evidence-based item writing guidelines might have 

introduced construct-irrelevant variance to the assessment and that the variance might 

have impacted the difficulty of a test item as well as the content independence of a test 

question.  This impact could result in “erroneous test scores and pass-fail decisions” (p. 

567).  Again, research on high-stakes nursing assessments (Tarrant & Ware, 2008) 

discovered that high-achieving students were more likely to be penalized by flawed items 

in comparison to borderline students.  This result was consistent with other findings in 

which flawed questions performed worse and negatively affected student achievement.  

Furthermore, researchers stated that the impact of such items could be substantial if large 

numbers of items across multiple assessments exhibited flaws.  

In the education domain, researchers (Allalouf & Abramzon, 2008) conducted a 

study and examined second language assessments.  They specifically investigated DIF 

and concluded that if many items (i.e., 42% in this study) functioned differentially, this 

could pose a potential threat to validity.  Thus, it was suggested to reduce the number of 
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DIF items while taking into consideration the test’s specifications.  The current study on 

power analysis provided some information on the cut-off values to possibly use for 

various conditions.  It is suggested that ±2.0 be used for ZSTD values to identify 

multiple-choice item misfit when the proportion of DIF items does not exceed 20% due 

to the high false positive rates.  For low-stakes situations like formative assessments, 

“whose primary goal is assessing the teaching and learning process while it is occurring” 

(Stout, 2002, p. 506), educators may use the score information with caution and examine 

individual student’s responses to further determine their performance, especially those 

items with possible bias.       

 The present effort demonstrated that the amount of error greatly impacted the 

ability of between-fit item fit statistic to correctly identify well-fitting items.  When/If the 

proportion of DIF items reached 40% of a test, none of the fit indices performed well in 

item identification within a reasonable error range (i.e., the typical Type I error rate of 

.05).  This serves to caution psychometricians and test developers while constructing 

multiple-choice items for assessments.  Only items with solid psychometric properties 

render accurate score interpretation and provide solid validity evidence.  Correct 

identification of well-fitting and poor-fitting items marks the initial step in developing an 

unflawed test question.  Over-identification of item misfit would lead to unnecessary 

revision or exclusion of well-performing items and waste time, money, and efforts 

dedicated in construction of these items.  Thus, the multiple-choice item writing 

principles are strongly suggested to be adhered to.  Furthermore, statistically sound 

sampling methods may be employed to obtain representative groups of test takers during 

the item analysis procedure in large-scale testing situations when the number of 
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examinees is extremely large (i.e., more than 25,000).  Pilot studies on all items and a 

smaller sample of test takers are also recommended to determine item fit prior to the 

official launch of a test administration.  

Limitations and Future Studies 

As simulation studies can only manipulate a number of conditions to examine due 

to various factors (e.g., complexity of a study design, computing power of a 

statistical/measurement program, programming requirement for a software), findings may 

be limited to specific situations under investigation.  Thus, further research is 

recommended. 

 Limitations.  As the results suggested, MNSQ values were problematic in 

identifying total item fit under the Rasch dichotomous model.  To remedy this, a study 

conducted by Wu and Adams (2013) examined the properties of residual-based fit indices 

in Rasch measurement models and analytically illustrated that these statistics “provide a 

measure of the relative slope of empirical item characteristic curves” (p. 339) for 

dichotomous responses.  It concluded that employing a sample size formula 1 ± 2 √
2

𝑁
  to 

approximate (p. 352) could provide an acceptable range for the MNSQ values.  

Simulation studies may be conducted to further determine how effective this criterion is 

before this rule of thumb becomes common practice.  In the meantime, ZSTD values are 

recommended and the customary ±2.0 may be used in large-scale testing situations.  

Furthermore, based on previous studies (Seol, 2016; Su et al., 2007), it is suggested that 

effect size measures are needed to show the magnitude of fit, thus CIs for the INFIT and 

OUTFIT mean square errors may be used and reported (Bandalos & Leite, 2013). 
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  Fit is well known that including construct-irrelevant variables within a test is 

detrimental to the validity of the associated test scores.  All psychological measurements 

include measurement error to some extent.  These errors can be broadly categorized as 

systematic error and random error (Bond & Fox, 2012).  Systematic errors impact a test 

taker’s raw score in a consistent manner due to some particular characteristic of the 

person or the test (i.e., gender, ethnicity, biased items, testing format that is familiar to a 

particular group of test takers).  The characteristic is independent of the construct being 

measured (Bond & Fox, 2012).  Random errors, on the contrary, affect a test taker’s 

observed score due to chance happenings (Bond & Fox, 2012).  For instance, a test taker 

may be more familiar with some content of the testing materials covered, distraction in 

the testing room, error during test administration, etc.  These errors affect the scores in 

positive or negative direction (Bond & Fox, 2012).  In the present study, only systematic 

error was simulated in the data sets due to programming constraints.  A study conducted 

by Smith (1994) investigated the power of item fit indices in detecting misfit.  Comparing 

the total item fit and the between item fit indices, it concluded that total fit statistic was 

less sensitive to systematic error and lacked power in detecting systematic measurement 

disturbances like item bias.  Furthermore, both the weighted and the unweighted 

between-fit statistics performed similarly enough so that one version of these was 

sufficient to use.  Therefore, between-fit statistic was used to examine performance of 

item fit indices due to their high power to detect systematic error in comparison to total 

fit statistic; thus, the performance of total fit statistics needs further investigation.  Future 

studies would like to generate response data with random error (i.e., guessing, 
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carelessness) in order to provide a better glimpse of the power and Type I error rates of 

total item fit indices. 

While it is encouraging to obtain an extremely high power of correctly identifying 

biased items with moderate to strong DIF, it is more meaningful to understand how the 

magnitude of bias influences the performance of item fit statistics.  The present study has 

attempted to examine items with moderate to large DIF; however, in reality, items with 

substantial DIF are usually revised and removed during item review sessions.  Major 

assessment programs, especially those that have been implemented multiple years, are 

usually well-designed.  Furthermore, it is rare to encounter tests whose items have the 

same amount of bias or uniform DIF in groups.  Studies on more complex situations that 

more realistically mirror real-world situations can be designed.  For instance, items with 

small DIF are considered negligible and it is common to have such items in assessments.  

While the number of test takers is extremely large, or with a high percentage of DIF 

items (i.e., 20% or more), will the amount of error reach an impactful level to influence 

the performance of item fit indices?   Other situations that warrant careful examination 

include: items with non-uniform DIF like ordinal DIF (i.e., item difficulty is different for 

the same group of examinees across all levels of ability; Walker, 2011) and disordinal 

DIF (i.e., item difficulty is different for a group of examinees at different ability levels; 

Walker, 2011); groups of unequal number of test takers (i.e., unbalance design like 

ethnicity) and multiple groups of test takers categorized by group membership; a mixture 

of items with small to moderate DIF and moderate to large DIF; bias items exhibit 

random DIF as well as systematic DIF, etc.  Nevertheless, this may require computers 

and calibration programs to have high computing capacity and to be programming 
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uncomplicated in generating the response data that meet specific study needs.  For low-

stakes assessments, educators may use score information with great caution.  Careful 

examination of student responses, especially those that are highly unexpected may be 

necessary.  

While results on the power analysis and the Type I error rates from the current 

study provided an excellent springboard to future research, the Smith study (1996) 

investigating the power of between-item fit statistic used unbalanced design with low to 

high biased items.  This study also concluded that the number of unbiased items being 

misidentified (i.e., false positive cases, Type I error rates) increased as the number of 

biased items increased.  However, the Smith study (1996) found that the bias magnitude 

needed to be larger than 0.5 logits in order to be detected more than 50% of the time 

under the situation of 100 samples in the focal group and 1,000 in the reference group.  

Also different from the current study, this unbalanced design study (Smith, 1996) 

indicated that the power to detect item bias decreased as the number of biased items 

increased and as the number of falsely identified unbiased items (i.e., false positive cases, 

Type I error rates) increased with smaller numbers of biased items.  Future work on the 

power and Type I error rates needs to be furthered.         

Future research.  Even though the current study could not identify specific 

sample sizes for various testing conditions to obtain reliable cut-off values for the item fit 

statistics, it has again stressed that sample size has an effect on chi-square type of 

statistic.  It is usually stated that these statistics do not function well when sample size is 

large (Linacre, 2019a).  However, it has not been made explicit how large is considered 

large.  No specific guidelines have been proposed.  Therefore, it is imperative that such 
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studies be conducted to guide researchers in choosing an appropriate number to pivot 

their study. 

In addition, the study generated data that fit the Rasch dichotomous model.  In 

other words, correctly specified models were used.  It is as important to examine mis-

specified models to see how these indices behave.  For instance, the DeMars’ study 

(2017) simulated several misfitting items (i.e., items with a different slope, items with a 

guessing parameter) and concluded that it appeared to be reasonable for judging the 

magnitude of misfit in the sample if the fit was statistically significant.  Inclusion of 

poorly fitting items better mirrors real-world testing situations that both well-functioning 

and misfitting items may be present in a test.  This warrants further research in future 

studies.  Additionally, state-wide assessment programs utilize test items other than the 

multiple-choice format (e.g., short-answer questions in SC Ready [SC Department of 

Education, 2016]; constructed-response items in SCPASS [SC Department of Education, 

2008]; essay writing in EOCEP [SC Department of Education, 2006]; etc.).  These types 

of response data (i.e., ordinal scale like a rating scale, answers that warrant a partial 

credit) could also be included for more complex tests in follow-up studies. 

It is noted that real world data can be complex (Bandalos & Leite, 2013) and 

empirical data are more likely to reflect the data complexity encountered in real world 

situations.  Thus, future studies may use empirical data to validate the study results.  For 

instance, music assessment data from the 2016-2017 test administration of the South 

Carolina Arts Assessment Program (SCAAP; SCDE, 2003) may be used to provide 

person and item estimates to generate response patterns.  Instead of the standard normal 

distribution for the person ability estimates and the uniform distribution to estimate item 
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difficulty parameter, specific estimates on person ability and item difficulty may be 

obtained, utilized, and simulated to generate responses.  The total number of items from 

this empirical data includes 45 multiple-choice items and one test form, with a range of 

difficulty levels (i.e., p-values) from 0.20 to 0.87.  Studies from this data may warrant 

interesting findings. 

As it was found that the Winsteps® between-item fit statistics used the logistic 

regression framework instead of the true between-item fit statistic, this finding should be 

examined further.  For example, a comparison of the regression-based Winsteps® results 

with procedures more aligned with the Rasch framework, such as the separate calibration 

results based upon standard error (i.e., the t-test method using the differences between 

two subpopulations on the same item for a pairwise comparison4; Wright & Stone, 1979) 

as well as calculations that use between-item fit statistic (see Formulas [10]-[13], Smith, 

1994).  In addition, future studies could attempt to replicate the findings using different 

sample sizes and levels of DIF among groups. 

Further, multiple programs (i.e., WinGen, Winsteps®) and software (i.e., R) were 

used to generate data.  Different programs and software may cause inconsistency in data 

simulation and impact study results.  Future studies may use one software program (e.g., 

R for data generation and result analysis) to determine if the results found here can be 

replicated.  Finally, the bootstrapping approach used in Winsteps® warrants in-depth 

examination as the sampling method can impact the performance of item fit statistics, and 

hence, the interpretation of the results.  

 
4 The formula is t = 

𝑑𝑖1− 𝑑𝑖2

( 𝑠𝑖1
2 + 𝑠𝑖2

2  )1 2⁄  ,             [14]  

where 𝑑𝑖1 and 𝑑𝑖2 are the difficulty of item i in the calibration based on each 

subpopulation, 𝑠𝑖1 and 𝑠𝑖2 are the standard error of estimate for 𝑑𝑖1 and 𝑑𝑖2 (Smith, 

2004b). 
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Summary and Significance of the Study 

The present study simulated dichotomous response data to examine the 

performance of four total item fit statistics: the weighted INFIT mean square, the 

weighted INFIT standardized value, the unweighted OUTFIT mean square, and the 

unweighted OUTFIT standardized value.  In large-scale testing situations where the 

number of test takers easily reach thousands and tens of thousands, the mean square 

values over-identify unbiased items as the chi-square statistic is extremely sensitive to 

sample size.  Simulation results suggested that the traditionally used ±2.0 values may be 

used for the standardized values to correctly identify item misfit at within the acceptable 

Type I error rate of .05.  Investigation on the power and Type I error rate of between-item 

fit statistics to identify simulated systematic measurement disturbances still needs further 

study.   

This study filled a gap in the Rasch literature in a number of ways.  First, the 

research approximated typical testing practices in the field by investigating the impact of 

larger sample sizes and longer tests on information used to make decisions about item fit.  

Previous studies in educational research did not have the computation capacity to mirror 

large-scale assessment situations as described in this study.  As many tests use the rule-

of-thumb values, it is crucial that these indices can detect items which do not fit the 

model (i.e., measurement disturbances) with sufficient power.  It is hoped that findings 

provide useful information to psychometricians and large-scale test developers in 

selecting objective test items that are well-fitting under a range of conditions (i.e., 

numbers of test taker, test length, proportion and magnitude of DIF items) that are similar 

to those encountered in practice.  Furthermore, the high importance of item quality needs 
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for psychometrician and test developers to take heed because measurement error greatly 

impacts item performance.  Even though it would be unexpected to have 40% of test 

items with DIF, the bounds of the indices were tested with simulation.  While it is very 

likely to have 4% of items with DIF, it is hoped that concrete results on the power and 

Type I error rates of the item fit indices will provide test developers with useful 

information to guide practice, especially the use of true item fit statistics aligned with the 

Rasch framework.
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APPENDIX A 

SELECTED Winsteps® CONTROL FILES AND LOOP FILE  

&INST 

TITLE = "Dissertation" 

PERSON = Person ; persons are ... 

ITEM = Item ; items are ... 

ITEM1 = 1 ; column of response to first item in data record 

NI = 50 ; number of items 

NAME1 = 52 ; column of first character of person identifying label 

NAMELEN = 4 ; length of person label 

XWIDE = 1 ; number of columns per item response 

CODES = 01 ; valid codes in data file 

UIMEAN = 0 ; item mean for local origin 

USCALE = 1 ; user scaling for logits 

UDECIM = 2 ; reported decimal places for user scaling 

TFILE=* 

14.1     ; output table 14.1 

* 

BOXSHOW = NO; output no border 

FITI = 0; include all items 

&END 

END LABELS  
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C: 

MKDIR \Users\Yin\Desktop\I50P5000  

CD \I50P5000 

REM  

set /a test=1 

:loop 

REM  

START /WAIT C:\Winsteps\winsteps.exe BATCH=YES Control.txt 

DATA%test%.out.txt data=Data%test%.txt  

REM  

START /WAIT C:\Winsteps\winsteps.exe BATCH=YES Control.txt 

data=Data%test%.txt DATA%test%.out.txt TFILE=* 14.1 * 

REM  

set /a test=%test%+1 

if not "%test%"=="1001" goto loop 

PAUSE 
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&INST 

ITEM1 = 1 ; Starting column of item responses 

NI = 50 ; Number of items 

NAME1 = 51 ; Starting column for person label in data record 

NAMLEN = 3 ; Length of person label 

XWIDE = 1 ; Matches the widest data value observed 

; GROUPS = 0 ; Partial Credit model: in case items have different rating scales 

CODES = 01 ; matches the data 

TOTALSCORE = Yes ; Include extreme responses in reported scores 

; Person Label variables: columns in label: columns in line 

@Group = $C51W3 ; $C51W3 

DIF=@Group ;Use the Group for DIF detection 

PSUBTOTAL = @Group      ; Subtotal by group 

TFILE=* 

30.4 ; output table 30.4 

* 

BOXSHOW = NO; output no border 

FITI = 0; include all items 

 

&END  

 

END LABELS 
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APPENDIX B 

SELECTED SAS® CODES TO SUMMARIZE FIT INDICES 

filename indata pipe 'dir C:\Users\burgessy\Desktop\SIMResults\50Items\I50P5000 /b'; 

 

data file_list; length fname $20; 

infile indata truncover; /* infile statement for file names */  

input fname $20.; /* read the file names from the directory */ 

call symput ('num_files',_n_); /* store the record number in a macro variable */ 

run; 

%macro fileread; 

 

%do j=1 %to &num_files;  

data _null_; 

set file_list;  

if _n_=&j; 

call symput ('filein',fname);  

run; 

 

 

/* read the data lines into a temporary file */ 

 

data temp; 

infile "C:\Users\burgessy\Desktop\SIMResults\50Items\I50P5000\&filein" firstobs=12 

obs=61 missover; 

input var1-var13 var14 $; 

run; 

 

/* assemble the individual files */ 

 

%if &j=1 %then %do; 

data data_all;  

set temp; 

run; 
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%end; 

 

%else %do; 

data data_all;  

set data_all 

temp; 

run; 

%end; 

 

%end; /* end of do-loop with index j */ 

 

%mend fileread; 

%fileread; 

 

data data_all (rename=(var1=entrynumber var2=score var3=totalcount var4=measure 

var5= modelse var6=infitmnsq 

var7=infitZSTD var8=outfitmnsq var9=outfitZSTD var10=CORR var11=CORRExp 

var12=ExtObsPerc var13=MatchExpPerc var14=Item)); 

set data_all; 

run; 

 

proc sort data=data_all; 

by item; 

run; 

 

data data_allrep; 

set data_all; 

by entrynumber; 

if first.entrynumber  

then replicate=1; 

else replicate+1; 

run; 

 

proc sort data=data_allrep; 

by replicate item; 

run; 

 

proc means data=data_allrep; 

class replicate; 

var infitmnsq infitZSTD outfitmnsq outfitZSTD; 

output out=data_allrep2 mean=replicate_mean; 

run; 

 

data data_allreppct; 

set data_allrep; 

by entrynumber replicate; 
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if infitmnsq>1.3  

then infitmnsq3=1; 

else infitmnsq3=0; 

if infitmnsq>1.2  

then infitmnsq2=1; 

else infitmnsq2=0; 

if infitmnsq>1.1  

then infitmnsq1=1; 

else infitmnsq1=0; 

 

if infitmnsq<0.9  

then infitmnsq9=1; 

else infitmnsq9=0; 

if infitmnsq<0.8  

then infitmnsq8=1; 

else infitmnsq8=0; 

if infitmnsq<0.7  

then infitmnsq7=1; 

else infitmnsq7=0; 

 

if outfitmnsq>1.3  

then outfitmnsq3=1; 

else outfitmnsq3=0; 

if outfitmnsq>1.2  

then outfitmnsq2=1; 

else outfitmnsq2=0; 

if outfitmnsq>1.1  

then outfitmnsq1=1; 

else outfitmnsq1=0; 

 

if outfitmnsq<0.9  

then outfitmnsq9=1; 

else outfitmnsq9=0; 

if outfitmnsq<0.8  

then outfitmnsq8=1; 

else outfitmnsq8=0; 

if outfitmnsq<0.7  

then outfitmnsq7=1; 

else outfitmnsq7=0; 

 

if infitZSTD>4.0  

then infitZSTD4=1; 

else infitZSTD4=0; 

if infitZSTD>3.0  

then infitZSTD3=1; 
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else infitZSTD3=0; 

if infitZSTD>2.0  

then infitZSTD2=1; 

else infitZSTD2=0; 

 

if infitZSTD<-4.0  

then infitZSTD4neg=1; 

else infitZSTD4neg=0; 

if infitZSTD<-3.0  

then infitZSTD3neg=1; 

else infitZSTD3neg=0; 

if infitZSTD<-2.0  

then infitZSTD2neg=1; 

else infitZSTD2neg=0; 

 

if outfitZSTD>4.0  

then outfitZSTD4=1; 

else outfitZSTD4=0; 

if outfitZSTD>3.0  

then outfitZSTD3=1; 

else outfitZSTD3=0; 

if outfitZSTD>2.0  

then outfitZSTD2=1; 

else outfitZSTD2=0; 

 

if outfitZSTD<-4.0  

then outfitZSTD4neg=1; 

else outfitZSTD4neg=0; 

if outfitZSTD<-3.0  

then outfitZSTD3neg=1; 

else outfitZSTD3neg=0; 

if outfitZSTD<-2.0  

then outfitZSTD2neg=1; 

else outfitZSTD2neg=0; 

 

run; 

 

proc sort data=data_allreppct; 

by replicate item; 

run; 

proc sql; 

create table infitmnsq as 

select   mean(infitmnsq3) as infitmnsq3_pct, 

 mean(infitmnsq2) as infitmnsq2_pct, 

 mean(infitmnsq1) as infitmnsq1_pct, 

 mean(infitmnsq7) as infitmnsq7_pct, 
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 mean(infitmnsq8) as infitmnsq8_pct, 

 mean(infitmnsq9) as infitmnsq9_pct 

from work.data_allreppct 

group by replicate  

order by replicate; 

quit; 

 

proc means; 

var infitmnsq3_pct infitmnsq2_pct infitmnsq1_pct infitmnsq7_pct infitmnsq8_pct 

infitmnsq9_pct; 

run; 

 

proc sql; 

create table infitZSTD as 

select   mean(infitZSTD4) as infitZSTD4_pct, 

 mean(infitZSTD3) as infitZSTD3_pct, 

 mean(infitZSTD2) as infitZSTD2_pct, 

 mean(infitZSTD2neg) as infitZSTD2neg_pct, 

 mean(infitZSTD3neg) as infitZSTD3neg_pct, 

 mean(infitZSTD4neg) as infitZSTD4neg_pct 

from work.data_allreppct 

group by replicate  

order by replicate; 

quit; 

 

proc means; 

var infitZSTD4_pct infitZSTD3_pct infitZSTD2_pct infitZSTD2neg_pct 

infitZSTD3neg_pct infitZSTD4neg_pct; 

run; 

 

proc sql; 

create table outfitmnsq as 

select   mean(outfitmnsq3) as outfitmnsq3_pct, 

 mean(outfitmnsq2) as outfitmnsq2_pct, 

 mean(outfitmnsq1) as outfitmnsq1_pct, 

 mean(outfitmnsq7) as outfitmnsq7_pct, 

 mean(outfitmnsq8) as outfitmnsq8_pct, 

 mean(outfitmnsq9) as outfitmnsq9_pct 

from work.data_allreppct 

group by replicate  

order by replicate; 

quit; 

 

proc means; 

var outfitmnsq3_pct outfitmnsq2_pct outfitmnsq1_pct outfitmnsq7_pct outfitmnsq8_pct 

outfitmnsq9_pct; 
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run; 

 

proc sql; 

create table outfitZSTD as 

select mean(outfitZSTD4) as outfitZSTD4_pct, 

 mean(outfitZSTD3) as outfitZSTD3_pct, 

 mean(outfitZSTD2) as outfitZSTD2_pct, 

 mean(outfitZSTD2neg) as outfitZSTD2neg_pct, 

 mean(outfitZSTD3neg) as outfitZSTD3neg_pct, 

 mean(outfitZSTD4neg) as outfitZSTD4neg_pct 

from work.data_allreppct 

group by replicate 

order by replicate; 

quit; 

 

proc means; 

var outfitZSTD4_pct outfitZSTD3_pct outfitZSTD2_pct outfitZSTD2neg_pct 

outfitZSTD3neg_pct outfitZSTD4neg_pct; 

run; 

 

data data_allcv; 

set data_allreppct; 

lcv1=infitMNSQ-2*modelse; 

ucv1=infitMNSQ+2*modelse; 

lcv2=outfitMNSQ-2*modelse; 

ucv2=outfitMNSQ+2*modelse; 

run; 

 

proc sql; 

create table criticalvalues as 

select lcv1 as lcvinfit, 

  ucv1 as ucvinfit, 

  lcv2 as lcvoutfit, 

  ucv2 as ucvoutfit 

from work.data_allcv 

group by replicate 

order by replicate; 

quit; 

 

proc means; 

var lcvinfit ucvinfit lcvoutfit ucvoutfit; 

run; 
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APPENDIX C 

SELECTED R CODES TO GENERATE RESPONSES FOR POWER ANALYSIS 

# Read in the item parameters # 

source("http://people.stat.sc.edu/habing/courses/irtS14.txt") 

 

############ Total number of items ################ 

nitem <- 50 

###### Number of DIF items ########## 

ndifitem_1 <- 0.04*50 

ndifitem_2 <- 0.1*50 

ndifitem_3 <- 0.2*50 

ndifitem_4 <- 0.4*50 

######### Sample size ############ 

N_1 <- 5000 

N_2 <- 10000 

N_3 <- 25000 

N_4 <- 50000 
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############ Create ability for two groups (A,B) and item difficulty parameter 

########## 

set.seed(2019) 

ability_1 <- rnorm(N_1,mean=0,sd=1) 

ability_1A <- ability_1[1:2500] 

ability_1B <- ability_1[2501:5000]  

ability_2 <- rnorm(N_2,mean=0,sd=1) 

ability_2A <- ability_2[1:5000] 

ability_2B <- ability_2[5001:10000]  

ability_3 <- rnorm(N_3,mean=0,sd=1) 

ability_3A <- ability_3[1:12500] 

ability_3B <- ability_3[12501:25000]  

ability_4 <- rnorm(N_4,mean=0,sd=1) 

ability_4A <- ability_4[1:25000] 

ability_4B <- ability_4[25001:50000]  

difficulty<-runif(nitem,-2,2) 

# difficulty<-uniform(30,min=-2,max=2) 

 

# Create DIF items. Here we are going to create 2,5,10,20 large DIF items ###### 

dif_2l <- difficulty 

dif_2l[49] <- dif_2l[49]+0.65 

dif_2l[50] <- dif_2l[50]+0.65 

 

dif_5l <- difficulty 
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dif_5l[46] <- dif_5l[46]+0.65 

dif_5l[47] <- dif_5l[47]+0.65 

dif_5l[48] <- dif_5l[48]+0.65 

dif_5l[49] <- dif_5l[49]+0.65 

dif_5l[50] <- dif_5l[50]+0.65 

 

dif_10l <- difficulty 

dif_10l[41] <- dif_10l[41]+0.65 

dif_10l[42] <- dif_10l[42]+0.65 

dif_10l[43] <- dif_10l[43]+0.65 

dif_10l[44] <- dif_10l[44]+0.65 

dif_10l[45] <- dif_10l[45]+0.65 

dif_10l[46] <- dif_10l[46]+0.65 

dif_10l[47] <- dif_10l[47]+0.65 

dif_10l[48] <- dif_10l[48]+0.65 

dif_10l[49] <- dif_10l[49]+0.65 

dif_10l[50] <- dif_10l[50]+0.65 

 

dif_20l <- difficulty 

dif_20l[31] <- dif_20l[31]+0.65 

dif_20l[32] <- dif_20l[32]+0.65 

dif_20l[33] <- dif_20l[33]+0.65 

dif_20l[34] <- dif_20l[34]+0.65 

dif_20l[35] <- dif_20l[35]+0.65 

dif_20l[36] <- dif_20l[36]+0.65 
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dif_20l[37] <- dif_20l[37]+0.65 

dif_20l[38] <- dif_20l[38]+0.65 

dif_20l[39] <- dif_20l[39]+0.65 

dif_20l[40] <- dif_20l[40]+0.65 

dif_20l[41] <- dif_20l[41]+0.65 

dif_20l[42] <- dif_20l[42]+0.65 

dif_20l[43] <- dif_20l[43]+0.65 

dif_20l[44] <- dif_20l[44]+0.65 

dif_20l[45] <- dif_20l[45]+0.65 

dif_20l[46] <- dif_20l[46]+0.65 

dif_20l[47] <- dif_20l[47]+0.65 

dif_20l[48] <- dif_20l[48]+0.65 

dif_20l[49] <- dif_20l[49]+0.65 

dif_20l[50] <- dif_20l[50]+0.65 

 

#Generate One Simulated Data # 

source("http://people.stat.sc.edu/habing/courses/irtS14.txt") 

group1<-c(rep("A",2500),rep("B",2500)) 

group2<-c(rep("A",5000),rep("B",5000)) 

group3<-c(rep("A",12500),rep("B",12500)) 

group4<-c(rep("A",25000),rep("B",25000))            

            

nsims<-1000 

 

simdata <- function(ability1,ability2,DIFitem,group){ 
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  for (sim in 1:nsims){ 

    U1<- irtgen(ability1,A=1,B=difficulty,rep(0,50),type="norm") 

    U2<-irtgen(ability2,A=1,DIFitem,rep(0,50),type="norm") 

    U<- rbind(U1,U2) 

    U<- data.frame(U,group) 

    assign(paste0("SimData",sim),U) 

    filename1 <- paste("SimData",sim,".txt",sep="") 

    write.table(get(paste0("SimData",sim)),file=filename1,sep="",row.name=F,col.names 

= F) 

  }   

} 

 

# 2500 sample size each group, large DIF,1DIF items#### 

simdata(ability_1A,ability_1B,dif_2l,group1) 

# 2500 sample size each group, large DIF,3DIF items #### 

simdata(ability_1A,ability_1B,dif_5l,group1) 

# 2500 sample size each group, large DIF,6DIF items #### 

simdata(ability_1A,ability_1B,dif_10l,group1) 

# 2500 sample size each group, large DIF,12DIF items #### 

simdata(ability_1A,ability_1B,dif_20l,group1) 

 

# 5000 sample size each group, large DIF,1DIF items#### 

simdata(ability_2A,ability_2B,dif_2l,group2) 

# 5000 sample size each group, large DIF,3DIF items #### 

simdata(ability_2A,ability_2B,dif_5l,group2) 
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# 5000 sample size each group, large DIF,6DIF items #### 

simdata(ability_2A,ability_2B,dif_10l,group2) 

# 5000 sample size each group, large DIF,12DIF items #### 

simdata(ability_2A,ability_2B,dif_20l,group2) 

 

# 12500 sample size each group, large DIF,1DIF items#### 

simdata(ability_3A,ability_3B,dif_2l,group3) 

# 12500 sample size each group, large DIF,3DIF items #### 

simdata(ability_3A,ability_3B,dif_5l,group3) 

# 12500 sample size each group, large DIF,6DIF items #### 

simdata(ability_3A,ability_3B,dif_10l,group3) 

# 12500 sample size each group, large DIF,12DIF items #### 

simdata(ability_3A,ability_3B,dif_20l,group3) 

 

# 25000 sample size each group, large DIF,1DIF items#### 

simdata(ability_4A,ability_4B,dif_2l,group4) 

# 25000 sample size each group, large DIF,3DIF items #### 

simdata(ability_4A,ability_4B,dif_5l,group4) 

# 25000 sample size each group, large DIF,6DIF items #### 

simdata(ability_4A,ability_4B,dif_10l,group4) 

# 25000 sample size each group, large DIF,12DIF items #### 

simdata(ability_4A,ability_4B,dif_20l,group4) 
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APPENDIX D 

Winsteps® SAMPLE OUTPUT FOR BETWEEN-ITEM FIT STATISTICS  

TABLE 30.4  

INPUT: 50000 PERSON  25 ITEM  REPORTED: 50000 PERSON  25 ITEM  2 CATS 

WINSTEPS 4.4.8 

 DIF class/group specification is: DIF=@Group 

   PERSON     SUMMARY DIF                BETWEEN-CLASS/GROUP ITEM 

  CLASSES   CHI-SQUARED   D.F.  PROB.  UNWTD MNSQ    ZSTD  Number Name 

         

        2        63.7042       1   .0000      63.9292     6.83       1  I0001 

        2        29.1739       1   .0000       28.9890     4.87       2  I0002 

        2        20.6326       1   .0000       20.4847    4.15       3  I0003 

        2       32.9327       1  .0000       33.2318     5.17       4  I0004 

        2        71.2943       1   .0000       71.6271     7.16       5  I0005 

        2          5.5372       1   .0186          5.6665     2.13       6  I0006 

        2       88.1471       1   .0000       88.8114     7.81       7  I0007 

        2        71.3264       1   .0000       72.0159     7.18       8  I0008 

        2        55.0539       1   .0000       55.2620     6.43       9  I0009 

        2      32.4286       1   .0000       32.8350     5.14      10  I0010 

        2        64.9189       1   .0000       64.4907     6.86      11  I0011 

        2        23.3563       1   .0000       23.6806     4.44      12  I0012 

        2        54.9787       1   .0000       54.2604     6.38      13  I0013 

        2        64.6358       1   .0000       64.4295     6.85      14  I0014 

        2        36.9369       1   .0000       36.6548     5.40      15  I0015 

        2        42.7445       1   .0000       42.3203     5.74      16  I0016 

        2        42.1573       1   .0000       42.4552     5.75      17  I0017 

        2        79.6139       1   .0000       80.2599     7.50      18  I0018 

        2        39.3513       1   .0000       39.2892     5.56      19  I0019 

        2        86.9718       1   .0000       86.2351     7.72      20  I0020 

        2        53.5230       1   .0000       54.3562     6.39      21  I0021 

        2        53.0248       1   .0000       52.4575     6.29      22  I0022 

        2        65.3380       1   .0000       64.6835     6.87      23  I0023 

        2        13.7623       1   .0002       13.8027     3.44      24  I0024 

        2          1850.5184       1   .0000            1903.2266        24.64      25  I0025 
 


	A Rasch Investigation of Type I Error Rates and Power Associated With Item Fit Statistics Under Large-Scale Testing Situations
	Recommended Citation

	tmp.1603324660.pdf.XWlQD

